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ABSTRACT

NON-OVERLAPPING DOMAIN DECOMPOSITION PARALLEL
ALGORITHMS FOR CONVECTION-DIFFUSION PROBLEMS

by

Shawn J.A. Chiappetta

The University of Wisconsin-Milwaukee, 2009
Under the Supervision of Dr. B. A. Wade

Domain decomposition has many benefits that, with the plethora of fast and

cheap computers, allow for large problems to be solved in parallel at speeds that

were previously unattainable. This dissertation builds on known algorithms, ex-

tends and expands methods of solving the general convection-diffusion equation with

non-overlapping domain decomposition by numerical methods through modifying the

designed interface computation. Maximum principles are employed for stability and

error estimates of the algorithms and several numerical studies of performance are

developed.
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1

Chapter 1

Introduction

It is highly desirable to find numerical methods to solve partial differential equations

that do not have stability restrictions on the relationship between the spatial and

temporal discretizations, like forward Euler. If this cannot be accomplished, it would

be acceptable to have a method that minimizes the restriction as much as possible.

Along with standard methods of numerical computation, there is movement to find

methods that can be parallelized to take advantage of advances in computer processing

power. One would like to take advantage of the lowered cost of processing power and

couple with parallel code to run numerical experiments at a fraction of the time

and cost as the identical serial code would take. Unfortunately, transforming serial

code into parallel code uncovers issues focused on handling the interface between the

subdomains created by the domain decomposition.

We would like to solve partial differential equations of convection-diffusion type

numerically by using domain decomposition methods. The trouble one faces when im-

plementing domain decomposition methods is precisely the handling of the interface,

also called the artificial boundary, between two or more subdomains. The primary
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problem that must be overcome is that natural methods to resolve the interface, like

forward Euler, deal with implementing some type of explicit computation which im-

poses an undesirable constraint on the size of the time step in order to maintain

stability.

The interface problem has been looked at from two major perspectives. The first

deals with the interface by using overlapping subdomains. In this case, the direction

of current research deals with handling nonmatching grids in the overlapped zones

(see, for example, [9, 25, 44]). The second, and more relevant perspective for purposes

of the dissertation, is dealing with the interface using non-overlapping subdomains.

From this perspective, we look to find algorithms that minimize the information

that must be sent to compute the interface whether it be for the elliptic or parabolic

problem. The variety of methods that have been implemented range from using

Lagrangian multiplier techniques [29, 43] to finite element methods [18, 30]. In our

case, we are interested in extending and expanding the results from [13]. The paper

introduces a method of computing the interface by implementing a coarse grid as a

way to reduce the affect of using an explicit computation which imposes a constraint

on the size of the time step. The notion of the coarse grid and the proof techniques

introduced in [13] allowed for the ability to use maximum principles to prove error

estimates on the parallel algorithms.

The coarse grid was then used to apply the concept of the corrected explicit-

implicit domain decomposition [11, 38, 48]. In each of these papers, the authors work

to extend the work in [13] by introducing proof techniques to handle the interface

to varying degree. In [48], the authors attempt to rework the results from [13] using

operators in hopes to create a more robust method of proof while using the same

course grid. Unfortunately, as pointed out in [38], the proofs were incomplete and
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decreased the flexibility of the domain partitioning. While [38] was able to prove

unconditional stability, the authors need to implement an explicit-implicit alternating

domain decomposition which increases the complexity of the algorithm and can only

be shown to work for the heat equation and not a more general differential equation.

Another result that we look to is [15] which give methods using a multistep second-

order explicit scheme and a one-step high-order scheme. These schemes use the proof

technique from [13] as a basis.

An issue that arises with the results of [13], along with extensions like [15, 2],

is the dependency of constructing a Green’s function to push their proofs through.

Whereas [11] introduces a method of proof that removes the need for the construction

of Green’s function and also extends the problem type to the convection-diffusion

equation rather than the limited heat equation. The algorithms introduced in [11]

were different from [13] with respect to needing the addition of an implicit corrector

in addition to the coarse grid explicit predictor. The algorithms were also shown only

for the one-dimensional case.

The aim of the dissertation is to develop and implement four new domain decom-

position methods for the convection-diffusion PDE in two-dimensions. The four new

methods are constructed by implementing an explicit predictor/implicit corrector to

update the interface between the artificial boundaries for each pair of adjacent sub-

domains at each time step all the while using the coarse grid to minimize the effect

of the explicit scheme used for the predictor. The algorithms improve on the imple-

mentation of the coarse grid introduced in [13] by removing the need of constructing

a Green’s function, not requiring strip domains and extending the classes of problems

one can solve to the convection-diffusion equations. In regards to [11], we modify the

algorithms and proof techniques to work with two-dimensional problems. The last
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algorithm introduced improves on the results from [15] by creating an algorithm that

keeps the order of the scheme the same, but the implementation is made easier by

using a simple linear extrapolation for the explicit predictor phase.

The dissertation is structured with Section 1.1 introducing the convection-diffusion

equation and lays the theoretical groundwork for using the maximum principle as a

basis for proving the presented results. Section 1.2 introduces some history of parallel

computing along with some expectations one must keep when dealing with parallel

computations. Section 1.3 gives a background on domain decomposition, including

the difference between overlapping and non-overlapping domain decomposition. We

then give a summary of results from Dawson, Du and Dupont [13] and Daoud, Khaliq

and Wade [11]. Finishing the chapter, we look at other results related to domain

decomposition methods and discuss strengths and weaknesses of those methods in

regards to the convection-diffusion problem.

Chapter 2 introduces four new parallel algorithms that differ in their handling

of the interface between the subdomains. Section 2.1 gives an extension of the one-

dimensional method of [11] with proofs of a maximum principle and an error estimate.

The algorithm employs a computation on the interface that is part implicit and part

explicit. The method allows for a relaxation of the temporal constraint arising from

the explicit portion by employing the course grid originated in [13]. Section 2.2 gives

a modification of the first scheme by changing the explicit interface computation

to one that extends the use of the explicit coarse grid computation to more of the

interface. Moving to Section 2.3, we introduce, state and prove an error estimate

for an algorithm that rotates the five-point Laplacian finite difference formulas so

as to use the diagonal elements off of the interface. The last section in Chapter 2

introduces an algorithm where linear extrapolation is used for the explicit interface



5

computation with an improved constraint on the relationship between the spatial and

temporal values than what is currently published and proves a corollary showing the

interrelated nature of two of the algorithms with this last one.

Chapter 3 begins with a short description of the setup of a Beowulf cluster along

with a short introduction of the protocol used in the programs. Four test problems are

introduced and results are compared using their l∞ errors as well as looking at timings

between the different algorithms versus the standard backward Euler serial algorithm.

We finish with Chapter 4 where suggestions are made for further research. One direct

consequence is given as a direct extension of one of the two-dimensional algorithms to

three-dimensions. The Appendix, for those interested, gives a more technical detail

to the Message Passing Interface (MPI) used, MPI-Chameleon (MPICH) [24], along

with the source code used to run the experiments.

1.1 The Partial Differential Equation

We start by considering the following parabolic convection-diffusion problem: Find

u(x, t), such that

∂u/∂t+ Lu = f in Ω× [0, T ],

u(x, t) = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ Rd, d = 1, 2 or 3 is a bounded, connected set with continuous boundary

∂Ω and L has the following form

Lu = −
d∑

i,j=1

∂

∂xi
(αij(x, t)

∂u

∂xj
) +

d∑
i=1

βi(x, t)
∂u

∂xi
+ γ(x, t)u. (1.2)
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We also need L to be uniformly elliptic, meaning for any point x ∈ Ω there exists a

constant µ0 > 0 such that

n∑
i,j=1

αi,j(x, t)ξiξj ≥ µ0

n∑
i=1

ξ2
i

for all n-tuples of real numbers ξ = (ξ1, ξ2, . . . , ξn). Also, we assume the coefficients

αi,j(x, t), βi(x, t) and γ(x, t) are continuous in Ω× [0, T ] and γ(x, t) ≤ 0 in Ω× [0, T ].

Let the matrix formed by αi,j(x, t) be positive definite. Lastly, it is assumed that

u(x, t) has continuous second derivatives in space and continuous first derivative in

time. On this point, we will adopt the notation of [17] which defines that u(x, t) ∈ C2
1

precisely when u satisfies the conditions just stated.

A useful tool that will be used in the dissertation is that of the maximum principle.

This principle generalizes the notion that any twice-differentiable function f(x) which

satisfies the inequality f ′′ > 0 on an interval achieves its maximum value at one of the

endpoints of the interval. The maximum principle allows us to obtain information

about the solutions of differential equations without any explicit knowledge about

the solution themselves which is exactly the situation we look to remedy by using

numerical methods to find an approximate solution to the differential equation.

For the remainder of this section, we present a weak maximum principle and

Harnack’s Inequality to set up a strong maximum principle and conclude with a

result in the form of a statement of existence and uniqueness of the solution to the the

parabolic convection-diffusion equation. We introduce the notation ΩT := Ω× (0, T ]

and Σ = Ω× {t = 0} ∪ ∂Ω× [0, T ].

Theorem 1.1 (Weak Maximum Principle for γ ≥ 0, [17]). Let Γ be a bounded,

connected subset in Rd, d =1, 2 or 3. Assume u ∈ C2
1(ΩT )∩C(ΩT ) and γ ≥ 0 in ΩT .
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1. If ∂u/∂t+ Lu ≤ 0, in ΩT , then

max
ΩT

u(x, t) ≤ max
Σ

u(x, t).

2. Likewise, if ∂u/∂t+ Lu ≥ 0, in ΩT , then

min
ΩT

u(x, t) ≥ min
Σ
u(x, t).

To obtain a stronger version of the previous theorem, we need Harnack’s Inequality

for the parabolic problem. Harnack’s Inequality states if u is a nonnegative solution of

the parabolic PDE, then the maximum of u in some interior region can be estimated

by the minimum of u in the same region at a later time.

Theorem 1.2 (Harnack’s Inequality, [17]). Assume u ∈ C2
1(ΩT ) solves

∂u/∂t+ Lu = 0, in ΩT , (1.3)

and u ≥ 0 in ΩT . Suppose V ⊂⊂ Ω is connected. Then for each 0 < t1 < t2 ≤ T ,

there exists a constant C such that

sup
V
u(·, t1) ≤ C inf

V
u(·, t2). (1.4)

The constant C depends only on V , t1, t2 and the coefficients of L.

Using Harnack’s Inequality, the following result can be shown:

Theorem 1.3 (Strong maximum principle for γ ≥ 0, [17]). Assume u ∈ C2
1(ΩT ) ∩

C(ΩT ) and γ ≥ 0 in ΩT . Suppose also that Ω is bounded and connected.
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1. If ∂u/∂t+ Lu ≤ 0, in ΩT , and u attains a nonnegative maximum over ΩT at a

point (x0, t0) ∈ ΩT , then u is constant on ΩT .

2. Likewise, if ∂u/∂t+ Lu ≥ 0, in ΩT , and u attains a nonpositive minimum over

ΩT at a point (x0, t0) ∈ ΩT , then u is constant on ΩT .

The culmination of these theorems yields the following statement:

Theorem 1.4 (Friedman, [20]). Let L be elliptic in a connected set Ω and the coef-

ficients of L be continuous. Then there exists at most one solution to the boundary

value problem

∂u/∂t+ Lu = f in Ω× [0, T ],

u(x, t) = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) in Ω.

(1.5)

To review, instead of using energy methods to show existence and uniqueness of a

solution to (1.5), we can use the maximum principle to obtain alternate results. The

reason one would choose this method is to be able to use the pointwise characteristics

of the problem to attain our solutions.

1.2 Parallel Computing

The concept of parallel computing can be considered a natural one. Particularly

when viewed that the human mind models the notion of parallel computing as the

neurons in the human brain work in concert handling many pieces of information

simultaneously. In this section, we give a brief history of parallel computing with a

short discussion describing the different hardware architectures for parallel processing,

as well as compiler solutions. We finish with some cautions one must keep in mind

when using parallel computing.
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The history of parallel computing dates back to the late 1950s when S. Gill dis-

cussed parallel programming and the need for branching and waiting [21]. While in

1967, Amdahl and Slotnick published a debate [1] about the feasibility of parallel

processing. In this debate, the term Amdahl’s Law was put into the vernacular as a

way to define the limit of speed-up to to parallelism, a topic we will return to as a cau-

tion. The C.mmp was an early multiprocessor system developed at Carnegie-Mellon

University in 1971 [32] that used sixteen PDP-11 minicomputers as the processing

elements. Another project that was started at Caltech and ran from 1983 to 1990

was the Caltech Concurrent Computation Program (C3P). In a multidisciplinary col-

laboration, a 64-node machine was create and dubbed the Cosmic Cube [19].

While the first commercial clustering product, called ARCnet, was developed in

1977. It was not until an open source software was introduced in 1989, called Parallel

Virtual Machine (PVM) and developed by Oak Ridge National Laboratory, Emory

University, and the University of Tennessee. With PVM and the subsequent advent of

inexpensive networked PCs Donald Becker and Thomas Sterling, in late 1993, outlined

a commodity-based cluster system, now known as a Beowulf cluster. These clusters

came to overshadow and eventually displace the concept of parallel computing on a

supercomputer. This was notably due to NASA’s Goddard Space Flight Center, when

in 1994, developed the first Beowulf cluster using 16 Intel 100-MHz PCs that were

connected by dual 10-Mbps Ethernet LANs [33]. The components, being off-the-shelf,

and the developed software tools allowed users to show the performance gains as wells

as the cost effectiveness of the Beowulf system for real-world scientific applications.

Currently, because consumers continue to become more mobile and energy conscious,

manufactures continue to research and develop new methods to add more cores which

is more energy efficient than increasing the clock frequencies of the processors [24].
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The core elements of parallel processing are CPUs based on the number of in-

structions and data streams that can be processed simultaneously. Systems can be

classified into one of the following four categories: Single Instruction, Single Data

(SISD), Single Instruction, Multiple Data (SIMD), Multiple Instruction, Single Data

(MISD), and Multiple Instruction, Multiple Data (MIMD).

A SISD system is a single processor machine that is capable of executing a single

instruction which operates on a single data stream. Examples of these types of systems

are early IBM-PC and Macintoshes. The speed of processing in a SISD system is

limited by the rate at which the computer can transfer information internally. A SIMD

system, like the CRAY’s vector processing machine T80, is a multiprocessor machine

that can execute the same instructions on all the CPUs, but operate on different data

streams. The MISD system is capable of executing different instructions on different

processors, but operates on the same data set. The MISD systems have been built,

but since they are not as useful in most applications none have been commercially

produced. One such system is the experimental Carnegie-Mellon C.mmp computer.

The last category, MIMD, is the group of multiprocessor machines that can be found in

off-the-shelf hardware at many stores, like the Intel Core 2 Duo. With the MIMD, the

multiprocessor machine can execute multiple instructions on multiple data sets. Since

each processor has separate instructions and data streams, the model is well suited

for any kind of application. Examples of MIMDs are symmetrical multiprocessors

and clusters, like Beowulf clusters.

More discussion is warranted to breakdown the two types of MIMD machines:

shared memory and distributed memory. Most machines that are currently sold to

consumers fall into that of the shared memory system. In a shared memory model,

all the processors have access to the global memory. The communication that takes
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place goes through the shared memory and is visible to all other processors. Other

characteristics of shared-memory MIMD machines can be summarized as follows:

• Easy to build. Conventional operating systems can be easily adapted.

• Easy to program and does not involve much communication overhead.

• Since memory is shared, any issue involving the memory affects the entire sys-

tem.

• Adding more processors has repercussions due to memory contention. This

means that when different processors all want to read or write into the main

memory, there is a delay until the memory is free.

The distributed memory MIMD model machine is created so that each processor

has its own dedicated memory where communication occurs through the intercon-

nected network hence also given the name “loosely-coupled” multiprocessor system.

A similar summary of characteristics are:

• Easy to build, but needs light-weight operating system.

• More difficult to program than shared-memory systems, but is well suited for

real-time applications.

• Component failures can be isolated so as not to affect the entire system.

• Adding more processors is much easier when designing the system.

The hardware solutions are only a part of the evolution of parallel computing.

Parallel programs are harder to write in contrast to sequential ones. The difficulties

arise from the necessary synchronization and communication needed to take place
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between the tasks that are to be completed. Some standards have emerged starting in

the mid 1990s. For massively parallel processors and clusters, a number of application

programming interfaces moved to the standard known as Message Passing Interface

(MPI). For shared memory multiprocessor computing, a convergence occurred around

two standards occurred the late 1990s called pthreads and OpenMP. All of these

standards are modifications to conventional, non-parallel languages like C.

We finish the section with a word of caution regarding the possible benefits of

parallel computing. One might expect that given n processors that the speed should

be increased by n times. Unfortunately, when designing parallel code, one must

acknowledge Amdahl’s Law which says the maximum speedup, S, one can expect

from a parallel algorithm given that a proportion of the code, f , must be computed

sequentially is given by

S ≤ 1

f + (1− f)/N
(1.6)

where N is the number of processors [28]. Since any algorithm using a domain decom-

position method for our type of problem will have some serial code, like the subdomain

solves, we will never have f approach zero and hence always have a speedup that is

less than optimal. With this note, we turn our attention to developing the notions

behind domain decomposition.

1.3 Domain Decomposition

Given that parallel computing can obtain performance gains higher than serial com-

puting, we turn our attention to giving the background of how to take our differential

equation problem apart and take advantage of our multiprocessor system. Any do-

main decomposition method is based on taking a given computation domain, Ω, and
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partitioning into subdomains, Ωi, i = 1, . . . ,M , which may or may not overlap. The

original problem is then reformulated upon each subdomain, Ωi, so that a family

of subproblems are created that have reduced size and are coupled to one another

through the values of the unknown solution at the subdomain interfaces.

Even with the general definition of domain decomposition there is some interpre-

tation of the statement within different subareas of computational mathematics. For

instance, in parallel computing, domain decomposition is referred to as the techniques

for decomposing a data structure and can be independent of the numerical solution

methods. In preconditioning methods, domain decomposition is the process of subdi-

viding the solution of a large linear system into smaller problems whose problems can

be used to create a solver (preconditioner) for the system of equations that results

from the discretization of the PDE on the entire domain. Lastly, to those dealing

with asymptotic analysis, it means the separation of the physical domain into regions

that can be modeled with different equations. In this case, the interface between

the domains are handled by various conditions, like continuity. Given these different

interpretations, it is very likely that a program that works with one of the subareas

does address others as well.

To elaborate on the differences in overlapping and non-overlapping domain decom-

position, we look first at describing a simple overlapping algorithm, the alternating

Schwarz method. This earliest known domain decomposition was introduced by H.A.

Schwarz in 1870, but was not originally intended to be a numerical method. To sim-

plify the description of the Schwarz alternating method, we discuss the method in the
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context of the linear elliptic PDE

−4u = f in Ω (1.7)

u = g on ∂Ω. (1.8)

using Dirichlet boundary conditions. This point is justified for our discussion since,

at a fixed time level, the solving of the parabolic PDE is equivalent to that of an

elliptic problem which depends on a time step parameter.

Consider the domain given in Figure 1.1 with Ω = Ω1 ∪ Ω2 for which we want to

solve our PDE. Let ∂Ω denote the boundary of Ω and note that the domains Ω,Ω1,

and Ω2 do not include their boundaries. Also let Ω = Ω ∪ ∂Ω denote the closure of

the domain. The artificial boundaries, Γi, are the part of the boundary of Ωi that is

interior to Ω. We denote the points on ∂Ωi that are not on Γi by ∂Ωi/Γi.

Figure 1.1: Overlapping Domains

Next, let uni denote the approximate solution on Ωi after n iterations and un1 |Γ2

be the restriction of un1 to Γ2 and similarly define un2 |Γ1 . The Schwarz alternating

method begins by selecting an initial guess u0
2, for values in Ω2. Then, iteratively for



15

n = 1, 2, 3, . . . , one solves the boundary value problem,

−4un1 = f in Ω1

un1 = g on ∂Ω1/Γ1,

un1 = un−1
2 |Γ1 on Γ1

(1.9)

for un1 . This is followed by the solution of the boundary value problem,

−4un2 = f in Ω2

un2 = g on ∂Ω2/Γ2,

un2 = un−1
2 |Γ1 on Γ2.

(1.10)

This process reduces to stating that at each half-step, we solve the elliptic bound-

ary value problem on the subdomain Ωi with the given boundary values, g, on the true

boundary ∂Ωi/Γi, and the previous approximate solution on the interior boundary

Γi.

While this method can be parallelized, one immediately runs into a computational

bottleneck. Since each half-step is dependent on the previous half-step, meaning there

is a need to move a large amount of information from one subdomain to another. A

possible solution would be to remove the overlap. To illustrate this non-overlapping

domain decomposition method consider the domain given in Figure 1.2 again with

Ω = Ω1 ∪ Ω2 for which we want to solve our PDE. In this situation, we are sharing

a boundary Γ1 and have that Ω1 ∩ Ω2 = ∅. Begin by selecting an initial guess u0
i

for values in both Ω1 and Ω2. Then, iteratively for n = 1, 2, 3, . . . , one solves the
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boundary value problem,

−4uni = f on Γ1

uni = g in ∂Ωi/Γ1,

−4uni = f in Ωi in parallel.

(1.11)

Figure 1.2: Non-Overlapping Domains

The non-overlapping method has the benefit that the dependency on the other

subdomain to be solved for the previous half-step has been removed allowing for true

parallelism in the implementation of the algorithm. While we are able to describe

the difference between the overlapping and non-overlapping schemes relatively easy,

hidden is the computation of the interface values. The overlapping methods handle

the computation of the interface by creating a larger problem to solve where the

interface is interior of the overlap and then update the interface. Whereas, in non-

overlapping domain decompositions, we do not have the larger data set available to

compute the interface. In these cases, we must implement a scheme that directly

computes the interface using available data. An example of this can be explained

using the one-dimensional heat equation.
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ut − uxx = 0 x ∈ (0, 1), t ∈ (0, T ],

u(x, 0) = u0(x) x ∈ (0, 1),

u(0, t) = u(1, 0) = 0 t ∈ (0, T ].

(1.12)

If we were to solve this problem numerically on a serial machine, we might choose

to use backward Euler to take advantage of its stability and lack of a constraint on the

step size in time. Suppose we split the domain into two pieces, say (0, xp) and (xp, 1)

and define xp as our interface value. Our goal would be to compute the next time step

on each subdomain independently of each other. This seems relatively straightforward

until one realizes that a value for our interface is needed before the subdomain solve, as

the value becomes our artificial boundary condition, a necessity to solve the problem.

A natural choice under these conditions would to use an explicit scheme to compute

the interface. In Figure 1.3, we see what the stencil of the predictor using forward

Euler. This particular method gives one the value for the artificial boundary and

allows us to proceed to solve for the interior subdomain values. This type of solution

has the downside of introducing a constraint on the size of the time step due to the

explicit nature of the remedy. In particular, we have now introduced the constraint

that

4t ≤ 1

2
h2,

where 4t is our time step and h is our space step. By having this constraint we

lose much of the benefit of implementing a domain decomposition method due to

the necessity of requiring more time steps to guarantee stability and the constraint

negates the use of backward Euler for the subdomain solves because we could just

use forward Euler for the entire domain, a much simpler proposition.

The next section introduces some of the relevant results that are directed at dealing
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Figure 1.3: Explicit Computation of Interface Value Using Forward Euler

with the interface computation in ways that minimize the problems produced by the

explicit time step constraint on the interface.

1.4 Current Results

In 1991, Dawson, Du and Dupont [13] introduced a non-overlapping domain decom-

position method for the heat equation in the one-dimensional case

ut − uxx = 0 x ∈ (0, 1), t ∈ (0, T ],

u(x, 0) = u0(x) x ∈ (0, 1),

u(0, t) = u(1, 0) = 0 t ∈ (0, T ].

(1.13)

The purpose of their inquiries was to create a finite difference method to address

the non-overlapping domain decomposition rather than the finite element methods

used at the time [5, 12, 22]. They were also interested in finding a method to handle

the interface computation to reduce the impact of the inherited constraint from the

explicit computation. The case they present is a much simpler situation, dealing only

with the heat equation, than what we would like to focus in this dissertation, but the

results that Dawson, Du and Dupont attained are directly related to the direction we
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wish to take handling the convection-diffusion equation.

It is necessary to introduce notations and naming conventions that will reoccur

throughout the dissertation. For a positive integer N , let h = 1/N and take xi = i∗h,

i = 0, 1, . . . , N . Define our interface value x ∈ (0, 1) and assume that x and N are

such that x = xK > 0 for some integer K < N . A related parameter H is defined

so that H/h = q ≥ 1 is an integer and 0 < H < min {x, 1− x}, giving a coarse grid.

Take k = T/M , where M is a positive integer, and tn = n ∗ k. Take uni to be the

discrete set of approximations to u(xi, tn) as defined by the algorithms. Define the

difference operators

δku
n
i = (uni − un−1

i )/k

∇x,hu
n
i = (uni+1 − uni−1)/2h

4x,hu
n
i = (uni+1 − 2uni + uni−1)/h2.

We will refer to the points (xi, tn) ∈ ∂Ω as boundary points. The artificial boundary

will again be denoted as Γi where (xi, tn) ∈ Γi where xi = x are interface points.

Otherwise, they are interior points.

The algorithm that Dawson, Du and Dupont introduced in [13] is defined as:

uni = u(xi, tn) on ∂Ω

δku
n
i −4Hu

n−1
i = 0 on Γi

δku
n
i −4hu

n
i = 0 in Ωi

(1.14)

The approximation is given by an explicit forward difference formula on the interface,

while on the interior of the subdomains the algorithm satisfy an implicit backward

difference equation. Because of the use of an explicit method on the interface, the
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paper, [13], proves the algorithm has the constraint

k ≤ 1

2
H2. (1.15)

Notice that the constraint is based on size of the coarse grid parameter H not the

fine grid parameter h. Some information from the adjacent subdomain is necessary

to compute the value of the interface, but once computed, they create two decoupled

backward difference problems to be solved, both of which can be done in parallel.

In [13], the authors proved the following theorem.

Theorem 1.5 (Dawson, Du, Dupont, [13]). Suppose 1
2
|∂2u/∂t2| and 1

12
|∂4u/∂t4| are

bounded by C0 on Ω× [0, T ]. Suppose also that k ≤ H2/2. Then

max
i,n
|u(xi, tn)− uni | ≤

C0

4
(k + h2 +H3). (1.16)

The introduction of (1.15) given in [13] is important because the constraint is

now dependent on the coarse grid defined by H and not the fine grid defined by h.

Notice that by the constraint of the explicit computation on the fine grid, we are

forced to choose k = O(h2) which destroys the benefits of the implicit scheme used

on the subdomains. We would like to let both k and h go to zero with k = O(h) to

regain those benefits. In Theorem 1.5, we are left with an estimate of O(k+h2 +H3)

which, because h << H, yields a worst case scenario of O(k +H3). This fact allows

us choose H ≈ 3
√
k and decouple the driving parameter k from the fine grid h which

is where the decrease in performance arose from.

The crux of the proof relies on two concepts. The first is to prove the maximum

principle stated in Lemma 1.6 below and the ability to construct a specialized Green’s

function to push the result through.
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Lemma 1.6 (Dawson, Du, Dupont, [13]). Suppose that k ≤ H2/2 and that zni satisfied

the following relations:

zni ≤ 0 at boundary points,

δkz
n
i −4x,Hz

n−1
i ≤ 0 at interface points,

δkz
n
i −4x,hz

n
i ≤ 0 at interior points.

Then, for each i and n,

zni ≤ 0.

Proof of Theorem 1.5. Let eni = u(xi, tn)−uni be the discrete error, then Dawson, Du

and Dupont shows the scheme gives the error equations:

eni ≤ 0 on ∂Ωi,

δke
n
i −4x,He

n−1
i = Kn

i (k +H2) on Γi,

δke
n
i −4x,he

n
i = Kn

i (k + h2) in Ωi.

where |Kn
i | ≤ C0.

They proceed to solve for the Green’s functions θi and βi constrained by

−∂2
x,hθi = 1 0 < i < N

and

−∂2
x,hβi = 0 0 < i < N, i 6= K

−∂2
x,HβK = 1

where K is the interface index. Note that βi’s have requirements on the interface and

in the subdomains.
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Next, bounds are found for the functions. In particular,

0 ≤ θi ≤ 1
8

0 ≤ βi ≤ H
4
.

(1.17)

Coupled with the maximum principle, the bounds from (1.17) give an upper estimate

of the discrete error of the form

ξi = C0[θi(k + h2) + βi(k +H2)] (1.18)

yielding the result in (1.16).

Dawson, Du and Dupont extended their algorithm to approximate numerical so-

lutions, u, of the heat equation on Ω = (0, 1)2 satisfying

ut −4u = 0 (x, y) ∈ Ω, t ∈ (0, T ]

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω

u(x, y, t) = 0 (x, y) ∈ ∂Ω,

(1.19)

where 4u = uxx + uyy, by defining the algorithm using the following relations:

uni,j = u(xi, yj, tn) on ∂Ωi

δku
n
i,j −4x,Hu

n−1
i,j −4y,hu

n
i,j = 0 on Γi

δku
n
i,j −4x,hu

n
i,j −4y,hu

n
i,j = 0 in Ωi.

(1.20)

where 4y,hu
n
i,j is defined by

4y,hu
n
i,j = (uni,j+1 − 2uni,j + uni,j−1)/h2. (1.21)
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Notice on the interface, the computation is partially implicit (in the y-direction)

due to the implementation of 4n
y,hu

n
i,j. By using a hybrid scheme from the implicit

portion of the corrector, we add the task of finding a solution of a tridiagonal set of

equations at each time step. Compared to the relative sizes of the subdomain solves,

these interface computations are relatively small (solving an n × n matrix for the

tridiagonal system versus an n2timesn2 matrix for the subdomain solves). The proof

of the error estimate of this algorithm uses an analogue of Lemma 1.6 and, because

of the construction of the algorithm, the same one-dimensional Green’s functions are

used.

By using the the coarse grid, Dawson, Du and Dupont were able to relax the

stability constraint involving the relationship of the spatial and temporal mesh sizes

from using the explicit method on the interface, a major problem when using explicit

schemes. While the method Dawson, Du and Dupont introduced had many benefits,

there were some issues that others tried to overcome. One such issue comes from try-

ing to extend the scheme to the general convection-diffusion equation (1.5). Because

of the need to create a discrete Green’s function for the proof method in [13], trying

to extend this method to other types of PDEs becomes difficult since, in essence, we

are trying to find a left inverse operator for L (further discussions can be seen in

[14, 23, 31]). Dawson, Du and Dupont did obtain some results in this direction by

limiting their extension to modifying the computation along the interface to one that

is partially implicit and partially explicit. Unfortunately, one would like to create a

method that allows for a completely explicit computation along the interface.

Daoud, Khaliq and Wade [11] were able to take the results of Dawson, Du and

Dupont, extend their methodology and overcome some of the limitations. In par-

ticular, they were able to extend the algorithm from the heat equation to the more
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general convection-diffusion equation. Next, they introduced a technique of proof

that removed the need for the discrete Green’s function, so pivotal in [13]. A side

effect caused by the new method of proof is the change in relationship between the

fine mesh, coarse mesh and the time step sizes. As seen in [13], Dawson, Du and

Dupont showed, in the worst case, one would have a relationship that

k ≈ H3, (1.22)

whereas, Daoud, Khaliq and Wade [11] yield the relationship, again in the worst case,

that

k ≈ H2. (1.23)

As mentioned previously, the relationship between k and H controls the constraint

arising from the explicit computation on the interface. So (1.22) allows us to choose

k = O(H3) versus (1.23) which lets us choose k = O(H2), the latter being a little

worse constraint, but still much better than not using the coarse grid since h << H

and we would be forced to choose k = O(h2) from forward Euler on the fine grid. In

either case, by incorporating the coarse grid overlay, we are able to take advantage of

increasing the time step without detriment to the computation.

To describe the scheme of Daoud, Khaliq and Wade [11], we introduce the following

finite difference operators:

4x,hu
n
i = (uni−1 − 2uni + uni+1)/h2 (1.24)

5x,hu
n
i = (uni+1 − uni−1)/2h (1.25)

δku
n
i = (uni − un−1

i )/k (1.26)
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and

Lx,hu
n
i = −αni 4x,h u

n
i + βni · 5x,hu

n
i + γni u

n
i (1.27)

where αni = α(xi, tn), βni = β(xi, tn), γni = γ(xi, tn) and fni = f(xi, tn). Then the

method of Daoud, Khaliq and Wade [11] is defined as:

First, set u0
i = g. Then for n = 1, 2, . . . , N

1. Compute the interface using an explicit predictor on the coarse grid and assign

the value to the temporary placeholder un∗ .

unp = un−1
p − kLx,Hun−1

p + kfn−1
p (1.28)

2. Solve each subdomain Ω1,Ω2, . . . in parallel using an implicit solver with a fine

grid.

δku
n
i + Lx,hu

n
i = fni (1.29)

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid.

δku
n
p + Lx,hu

n
p = fnp . (1.30)

The differences of the implementation of this method in contrast to [13] materialize

as the generalization of the type of problem one is able to handle (now, the convection-

diffusion equation) and that a corrector is implemented in the last step, creating an

explicit predictor/implict corrector scheme. Recall that Dawson, Du and Dupont [13]

only solved for the heat equation and not for any other type of parabolic PDE. The

method from Daoud, Khaliq and Wade [11], on the other hand, can deal with the
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more general convection-diffusion PDE.

Before stating the result from [11], remember the requirements on the coefficients

for the parabolic PDE are that the functions must be continuous and bounded on

the domain. This results in the existence of constants α, α, β and γ such that for all

x ∈ Ω and t ∈ (0, T ]

α ≤ α(x, t) ≤ α, (1.31)

β(x, t) ≤ β, and (1.32)

γ(x, t) ≤ γ. (1.33)

We now state the main result from [11].

Theorem 1.7 (Daoud, Khaliq, Wade, [11]). Suppose u is sufficiently smooth and the

following conditions hold:

kγ < 1, H ≥

√
2αk

1− γk
, and h ≤ H ≤ 2α

β
. (1.34)

Then there exists a constant c, independent of the grid, such that for (xi, tn) ∈ Ω

|u(xi, tn)− uni | ≤ c(k + h2 +H2). (1.35)

Just as Dawson, Du and Dupont needed a maximum principle to prove their error

estimate, [11] did also.

Lemma 1.8 (Daoud, Khaliq, Wade, [11]). Suppose for n = 1, 2, . . . , N

δkz
n
i + Lx,hz

n
i = gni ,

zn0 = an and znp = bn,
(1.36)
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Then for each time level tn the following estimate must hold:

max
i
|zni | ≤ max

i
{|an|, |bn|}+ kmax

i
{|gni |}. (1.37)

Even though the scheme was designed for the one-dimensional convection-diffusion

equation, the proof techniques used in [11] are more generally applicable and give hope

of a reasonable extension to higher dimensional cases.

In 2001, Du, Mu and Wu [15] used the method of proof from Dawson, Du and

Dupont [13] and created an algorithm that handles the interface computation with

a higher order extrapolation technique for the one-dimensional heat equation. The

method is defined similar to [13] by

uni = u(xi, tn) on ∂Ωi

δku
n
i = a4x,Hu

n−1
p + b4x,2Hu

n−1
p on Γi

δku
n
i −4x,hu

n
i = 0 in Ωi

(1.38)

where a = 4/3 and b = −1/12.

The paper shows that the method is stable in the sense of Osher for 0 < ω ≤ 4/11

shown in the following theorem.

Theorem 1.9 (Du, Mu, Wu, [15]). For (1.38), under the stability condition 0 < ω ≤

4/11, there exists a constant c, independent of k and h, such that

|u(xi, tn)− uni | ≤ c(k + h2 +H5) ∀xi ∈ Ω. (1.39)

Due to the fact that a higher order scheme is needed to achieve the stability, one

hopes to find an intermediate solution that allows for an interface method that is
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of similar order as those in [13] and [11]. The method in Du, Mu and Wu [15] also

suffers the same limitations as Dawson, Du and Dupont [13] as the method presented

only works with the heat equation in one- and two-dimensions instead of the general

convection-diffusion equations due to the need to solve for similar discrete Green’s

functions found in [13].

One area that domain decomposition researchers have worked on is a standardized

notation and terminology. In Zhuang and Sun [48], the authors introduced similar

schemes as Dawson, Du and Dupont [13]. What was changed was notation and

terminology, instead of a corrector, the authors defined a ‘stabilizer’ which is supposed

to be chosen based on the predictor in such a way that the propagation of errors would

be counteracted. Zhuang and Sun [48] worked very hard to try to prove the stability

using more of a semi-group method, but were unsuccessful in their attempt, as noted

in [47]. The notation the authors introduced became restrictive when dealing with

the characteristic functions used to describe the elements. While it would have been

beneficial to be able to use the notation from the paper, difficulty quickly arose when

deciding how the operators interacted with each other.

Rivera, Zhu and Huddleston [36] published a survey of three different domain de-

composition methods to show the advantages of the non-overlapping schemes available

at the time. The authors showed experimental results of the one-dimensional heat

equation. Of particular note were the schemes labeled as the “Explicit Predictor”

(EP) and “Explicit Predictor/Implicit Corrector” (EPIC). The EP algorithm was de-

fined as the algorithm Dawson, Du and Dupont [15] introduced without the coarse

grid. The EPIC algorithm was the method given in Daoud, Khaliq and Wade [11]

without the coarse grid. Without using the coarse grid, the methods are bound to
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the constraint

k ≤ 1

2
h2 (1.40)

which, in essence, removes the benefits of the domain decomposition because we are

forced to choose k = O(h2), something we are not willing to accept. The authors

showed the numerical results in which EPIC outperformed the EP method and used

the methods to look at an application to aerospace engineering.

To review, Dawson, Du and Dupont [13] implemented an algorithm and method

of proof that, by implementing a coarse grid, allowed the scheme to regain some of

the benefits of the implicit solves on the subdomain by allowing the choice of the

time step k to be constrained by the coarse grid rather than the fine grid (destroying

the use of backward Euler). The results are useful, but was only able to extend to

the heat equation and not a more general equation, like convection-diffusion, caused

by the difficulty of constructing a discrete Green’s function used to prove their error

estimates. Du, Mu and Wu [15] used similar proof techniques as [13] and obtained

a result that implemented a higher-order extrapolation scheme for the predictor of

interface values. Since it used the same Green’s functions that method also was

unable to be extended to more a more general setting. Lastly, Daoud, Khaliq and

Wade [11] used the same coarse grid as Dawson, Du and Dupont, but presented

an alternate approach to develop the maximum principle necessary to prove their

error estimate. The result of their analysis, in one-dimension, yield a slightly weaker

relationship between the time step and coarse grid size, but allowed for approximating

more general partial differential equations, like the convection-diffusion equation.

We would like to now work to extend the results of [13, 15, 11] retaining their

benefits and removing some of their limitations. In the next chapter, we introduce

the four algorithms that use the coarse grid, with the coarse grid constraint, and can
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be applied to convection-diffusion equations in one- or two-dimensions.
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Chapter 2

Algorithms

From the last chapter, we showed current results that work to handle the interface

of the domain decomposition problem for PDEs. We also noted that there were

places that one might improve on the available information. One place in particular

is the extension to two-dimensions. Recall that in Section 1.4, we introduced the

one-dimension explicit predictor/implicit corrector method from Daoud, Khaliq and

Wade [11] in the following manner:

First, set u0
i = g. Then for n = 1, 2, . . . , N

1. Compute the interface using an explicit predictor on the coarse grid and assign

the value to the temporary placeholder un∗ .

unp = un−1
p − kLx,Hun−1

p + kfn−1
p (2.1)

2. Solve each subdomain Ω1,Ω2, . . . in parallel using an implicit solver with a fine

grid.

δku
n
i + Lx,hu

n
i = fni (2.2)
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3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid.

δku
n
p + Lx,hu

n
p = fnp . (2.3)

In Figure 2.1, we give a visual interpretation of the computations by displaying

the stencils for the predictor and corrector.

Figure 2.1: 1D Stencil for Daoud, Khaliq, and Wade algorithm [11]

The trouble of handling the interface in two dimensions deals with trying to find

a manner to handle the set of points that lie on the interface at each time step rather

than a single point in the one-dimension case. Because of this, we introduce four

two-dimensional algorithms. Each algorithm uses a different method to to compute

the interface values. We point out to the reader that while the two-dimensional

algorithms are related to the one-dimensional algorithms, it is hard to relate the two

types because of the extra care required for handling the second space variables. To

have a point of reference, we show in Figure 2.2 the standard five-point stencil used

by the finite difference method of the spatial variable for the heat equation.

The first algorithm in Section 2.1 (Figure 2.3) is a hybrid algorithm of similar ilk

as the algorithm of Dawson, Du and Dupont [13] but uses a new proof technique to
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Figure 2.2: Five-Point Stencil.

obtain a similar error estimate and constraint on the coarse grid as Daoud, Khaliq

and Wade [11]. This algorithm, which is given the name CEIDD-Hyb, where CEIDD

stands for Corrective Explicit/Implicit Domain Decomposition as we also implement

a corrector to the scheme, like the one-dimension scheme noted above.

Figure 2.3: Stencils used for CEIDD-Hyb.

In Section 2.2 (Figure 2.4), the second algorithm, named CEIDD-Exp1, changes

CEIDD-Hyb use as much of an explicit computation for the interface as allowed with
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the coarse grid and for the remaining interface values uses CEIDD-Hyb. Section

2.3 introduces CEIDD-Exp2 (Figure 2.5), a modification of CEIDD-Exp1 created

by reformulating the finite difference equations to rotate the standard the five-point

Laplacian in an effort to use values off the artificial boundary for computation of the

interface values. For each of these algorithms, a detailed explanation is given then

present statements and proofs of necessary maximum principles and error estimates.

To finish the chapter, the last parallel algorithm is introduced, CEIDD-Lex (Figure

2.6), an algorithm that implements linear extrapolation along the interface. The

requisite proof for this algorithm is given where it is shown that CEIDD-Exp1 is

equivalent to CEIDD-Lex.

Before delving further into the algorithms, we introduce more notation in an effort

to be clear throughout our discussion. We have already introduced the finite difference

operator in the one-dimensional case (1.27):

Lx,hu
n
i = −αni4x,hu

n
i + βni · ∇x,hu

n
i + γni u

n
i .

We will define LAbcx,y,h as the appropriate operator for the two-dimensional case defined

in each section, where ‘Abc’ is the abbreviation of the scheme name. For instance,

the algorithm for CEIDD-Hyb would be labeled as LHybx,y,h. The actual definition of

the operator will be introduced at the beginning of each section. We will describe a

split of our domain into only two strip subdomains for ease of explanation. There is

no limitation of the algorithms in generalizing to multiple strip subdomains. Because

our domain is two-dimensional, we should use un∗,j as the predicted interface value,

but since our computation is for each individual element and the j-value will be clear

in context, we will continue to use un∗ .
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Figure 2.4: Stencils used for CEIDD-Exp1.
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Figure 2.5: Stencils used for CEIDD-Exp2.
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Figure 2.6: Stencils used for CEIDD-Lex.
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2.1 Algorithm 1, CEIDD-Hyb

As stated in the introduction, CEIDD-Hyp modifies the algorithm given in [13] by

using a proof technique similar to that of Daoud, Khaliq and Wade [11] so that

we are able to use the algorithm on the more general convection-diffusion equation

(1.5), which is not a self-adjoint operator. This new extension also allows for us

to approximate the solution to the two-dimensional PDE rather than only the one-

dimensional scenario [11] worked with.

We will take our domain Ω and split it into two rectangular subdomains with the

artificial interface Γ being oriented at x = xp shown in Figure 2.7. The algorithm

starts by predicting on the interface with a hybrid explicit/implicit non-overlapping

domain decomposition method. The predictor uses forward Euler in the x -direction

(perpendicular to the interface) using the coarse grid (H) and backward Euler in

the y-direction (along the interface) using the fine grid (h). Once the interface is

computed, each subdomain is solved using backward Euler on the fine grid. To finish

the computation for the time step, the interface values are ‘corrected’ by discarding

the predicted values and recomputed using the new subdomain values and backward

Euler of the fine grid. We know that backward Euler is unconditionally stable which

guarantees that using values from the subdomain solves to recompute the predicted

interface will give us a more reliable approximation of the interface values for the next

time step.

We describe CEIDD-Hyb as follows:

Set u0
i,j = g. For n = 1, 2, . . . , N :

1. Compute the interface using a hybrid explicit/implicit predictor on the coarse
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Figure 2.7: Orientation of the subdomains.

grid (Figure 2.8) using

δku
n
p,j + LHybx,y,Hu

n−1
p,j = fn−1

p,j (2.4)

which allows us to solve for unp,j and then assign the interface values to the

temporary placeholder un∗ where

LHybx,y,Hu
n−1
p,j = −αn−1

p,j (4x,Hu
n−1
p,j +4y,hu

n
p,j)

+βn−1
p,j · (∇x,Hu

n−1
p,j +∇y,hu

n
p,j)

+γn−1
p,j u

n−1
p,j .

2. Solve on each subdomain Ω1 and Ω2 in parallel using an implicit solver with

a fine grid where the un∗ makes up the Dirichlet boundary on the side of the
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Figure 2.8: Stencil for predictor of CEIDD-Hyb.

appropriate subdomain.

δku
n
i,j + LBEx,y,hu

n
i,j = fni,j (2.5)

where

LBEx,y,hu
n
i,j = −αni,j(4x,hu

n
i,j +4y,hu

n
i,j)

+βni,j · (∇x,hu
n
i,j +∇y,hu

n
i,j)

+γni,ju
n
i,j.

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid

(Figure 2.9).

δku
n
p,j + LBEx,y,hu

n
p,j = fnp,j. (2.6)

It may be disconcerting that in the last step we are discarding the information

along the interface (un∗ ), but the values were temporary values needed to get through
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Figure 2.9: Stencil for corrector of CEIDD-Hyb.

the implicit solve on the subdomains. As stated earlier, the corrector, because it

uses an unconditional method, will yield a more stable approximation for the next

time step. Even though we are using an implicit scheme in both subdomains and the

corrected interface, we still used an explicit method for the predictor which leaves us

with a weak constraint on the size of the time step yet will still converge though not

unconditionally.

It is important to reiterate that for the interface we are using both an implicit

method, to correct for accuracy and preserve stability, and an explicit method, to

compute rapidly in a non-overlapping fashion. This scheme improves on the method

of Dawson, Du and Dupont [13] by creating a scheme that works for the general

convection-diffusion equation, rather than just the simpler heat equation. It also im-

proves the method of Daoud, Khaliq and Wade [11] by extending the algorithm to

the two-dimensional problem. As stated in Section 1.4, the algorithm does require a

small set of tridiagonal equations, a by-product of the implicit portion of the hybrid

predictor, that gives some extra computational work, but this is rather small com-

pared to those involved in the subdomains, something we shall note in the numerical

experiments.

Recall from Section 1.1, the coefficients α, β, and γ are assumed to be continuous
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and thus exists real numbers α, α, β and γ such that the following equalities hold for

all points in Ω where Ω is a bounded, connected region of R2 and t ∈ [0, T ):

0 < α < α < α

|β| ≤ β

0 ≤ γ ≤ γ

(2.7)

Theorem 2.1 (Error Estimate for CEIDD-Hyb). Suppose u(x, y, t) ∈ C2
1(Ω) and the

following conditions hold:

kγ < 1, H ≥

√
2αk

1− γk
, and h ≤ H ≤ 2α

β
(2.8)

Then, for CEIDD-Hyb there exists a constant c, independent of the grid, such that

for 1 ≤ i, j ≤M and 1 ≤ n ≤ N

|u(xi, yj, tn)− uni,j| ≤ c(k + h2 +H2). (2.9)

The reader will notice that the error estimate for Dawson, Du and Dupont is

slightly better with respect to the coarse grid, O(k + h2 + H3), versus the result of

this theorem, O(k+ h2 +H2), as k is the limiting factor. The new algorithm is much

more applicable, allowing for the use with convection-diffusion equations at the cost

of a fractional power in the size of the temporal mesh.

Before the proof of the error estimate, we need a discrete maximum principle.

Lemma 2.2 (Maximum Principle for CEIDD-Hyb). Under the assumptions of (2.8),
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suppose on one subdomain, say Ω1 := (0, x)× (0, 1), and n = 1, . . . , N

δkz
n
i,j + LBEx,y,hz

n
i,j = gni,j for interior points (2.10)

with zn0,j = an, znp,j = bn, zni,0 = cn and zni,M = dn, where an, bn, cn and dn are constants

which arise from the boundary values. Then the following estimate must hold at each

time level tn:

max
Ω1

|zni,j| ≤ max {|an|, |bn|, |cn|, |dn|,max
Ω1

|zn−1
i,j |}+ kmax

Ω1

|gni,j|. (2.11)

Proof. Suppose we have an index (r, s) is such that

|znr,s| = max
Ω1

|zni,j|. (2.12)

If r = 0 or p or s = 0 or M , the result is immediate. Therefore, suppose that (r, s) is

such that zr,s is an interior point in Ω1 is chosen. We consider the following cases:

1. Case 1: znr,s ≥ 0

Define αh = k
h2α

n
r,s and βh = k

2h
βnr,s, then beginning with

δkz
n
r,s + LBEx,y,hz

n
r,s = gnr,s, (2.13)

znr,s = zn−1
r,s + (αh − βh)znr+1,s + (αh + βh)z

n
r−1,s

+(−4αh − kγni,j)znr,s + (αh − βh)znr,s−1 + (αh + βh)z
n
r,s+1

+kgnr,s
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By the assumptions (2.8), h ≤ 2α/β can be rewritten as

|βni,j|h ≤ βh ≤ 2α < 2α. (2.14)

The implication of this statement along with the assumption of the case yields

the following results

|(αh ± βh)znr+1,s| ≤ (αh ± βh)|znr,s|. (2.15)

Using (2.14) and (2.15),

|znr,s| ≤ |zn−1
r,s |+ (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+(−4αh − kγni,j)znr,s + (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+k|gnr,s|

= |zn−1
r,s |+ 4αh|znr,s|+ (−4αh − kγni,j)|znr,s|+ k|gnr,s|

= |zn−1
r,s | − kγni,j|znr,s|+ k|gnr,s|

≤ |zn−1
r,s |+ k|gnr,s| (2.16)

2. Case 2: znr,s < 0

In this case, the assumption implies |znr,s| = −znr,s, and similar to the first case,

−znr,s = −zn−1
r,s + (αh − βh)(−znr+1,s) + (αh + βh)(−znr−1,s)

+(−4αh − kγni,j)(−znr,s) + (αh − βh)(−znr,s−1) + (αh + βh)(−znr,s+1)

+k(−gnr,s)
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which yields

|znr,s| ≤ |zn−1
r,s |+ (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+(−4αh − γni,j)znr,s + (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+k|gnr,s|

≤ |zn−1
r,s |+ k|gnr,s| (2.17)

Combining (2.16) and (2.17), along with the trivial cases along the boundaries, yields

the desired result.

Attention now returns to proving Theorem 2.1.

Proof of Theorem 2.1. We first define the error at a point (xi, yj) as

eni,j = u(xi, yj, tn)− uni,j, (2.18)

and we use the Taylor series in one variable about a point a for the discretization of

time. Similarly, we use the Taylor series in two variables about a point (a, b) for the

discretization in space

f(x, y) =
∞∑

n1=0

∞∑
n2=0

∂n1

∂xn1

∂n2

∂yn1

f(a, b)

n1!n2!
(x− a)n1(y − b)n2 . (2.19)

Since we need only the first few terms for our computation and using the fact that

our function is in C2
1(Ω), we can bound the remainder which gives a portion of the

error. The error must be computed for each step in our algorithm and combining the

definition of the error, Taylor polynomials and the remainder bound, we obtain the

following error equations:
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• To compute the error of δku
n
i,j, we use the Taylor expansion for one variable,

noting k = tn − tn−1 and see

uni,j = un−1
i,j + ∂/∂tuni,j(k) +O(k2) (2.20)

∂/∂tuni,j(k) = uni,j − un−1
i,j +O(k2) (2.21)

∂/∂tuni,j = (uni,j − un−1
i,j )/k +O(k). (2.22)

• To compute the error of 4x,hu
n
i,j +4y,hu

n
i,j, we use the Taylor expansion for two

variables, noting h = xn − xn−1 to find

uni+1,j = uni,j +
∂

∂x
uni,j(h) +

∂2

∂x2
uni,j

h2

2
+

∂3

∂x3
uni,j

h3

6
+O(h4) (2.23)

uni−1,j = uni,j +
∂

∂x
uni,j(−h) +

∂2

∂x2
uni,j

h2

2
+

∂3

∂x3
uni,j
−h3

6
+O(h4) (2.24)

uni,j+1 = uni,j +
∂

∂y
uni,j(h) +

∂2

∂y2
uni,j

h2

2
+

∂3

∂y3
uni,j

h3

6
+O(h4) (2.25)

uni,j−1 = uni,j +
∂

∂y
uni,j(−h) +

∂2

∂y2
uni,j

h2

2
+

∂3

∂y3
uni,j
−h3

6
+O(h4) (2.26)

When the left side of the equalities are summed we are left with

uni+1,j +uni−1,j +uni,j+1 +uni,j−1 = 4uni,j +
∂2

∂x2
uni,j(h

2)+
∂2

∂y2
uni,j(h

2)+O(h4) (2.27)

or

∂2

∂x2
uni,j(h

2)+
∂2

∂y2
uni,j(h

2) = uni+1,j+u
n
i−1,j+u

n
i,j+1 +uni,j−1−4uni,j+O(h4). (2.28)
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The final simplification arises from dividing by h2.

∂2

∂x2
uni,j +

∂2

∂y2
uni,j = (uni+1,j + uni−1,j + uni,j+1 + uni,j−1− 4uni,j)/h

2 +O(h2). (2.29)

• Lastly, we compute the error of ∇n
x,hu

n
i,j +∇n

y,hu
n
i,j, we use the expansion to find

uni+1,j = uni,j +
∂

∂x
uni,j(h) +

∂2

∂x2
uni,j

h2

2
+O(h3) (2.30)

uni−1,j = uni,j +
∂

∂x
uni,j(−h) +

∂2

∂x2
uni,j

h2

2
+O(h3) (2.31)

uni,j+1 = uni,j +
∂

∂y
uni,j(h) +

∂2

∂y2
uni,j

h2

2
+O(h3) (2.32)

uni,j−1 = uni,j +
∂

∂y
uni,j(−h) +

∂2

∂y2
uni,j

h2

2
+O(h3) (2.33)

Similarly, by looking at the sum of uni+1,j − uni−1,j and uni,j+1 − uni,j−1 we are left

with

uni+1,j − uni−1,j + uni,j+1 − uni,j−1 =
∂

∂x
uni,j(2h) +

∂

∂y
uni,j(2h) +O(h3) (2.34)

which when simplified yields

∂

∂x
uni,j +

∂

∂y
uni,j = (uni+1,j − uni−1,j)/2h+ (uni,j+1 − uni,j−1)/2h+O(h2). (2.35)

Combining these derivations allows us to compute the error equations as:

en∗ = en−1
p,j − kL

Hyb
x,y,He

n−1
p,j + kKn

∗,j(k + h2 +H2)

δke
n
i,j + LBEx,y,he

n
i,j = Kn

i,j(k + h2)

δke
n
p,j + LBEx,y,he

n
p,j = Kn

p,j(k + h2)

(2.36)
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with en0,j = enM,j = eni,0 = eni,M = 0. Kn
i,j and Kn

∗,j represent real numbers depending

on u, h,H, and k and are uniformly bounded, meaning their bounds are independent

of the grid parameters. Let

C1 = max
Ω1

{|Kn
i,j| : 1 ≤ n ≤ N}

C∗ = max
Γ
{|Kn

∗,j| : 1 ≤ n ≤ N}

where the constants are also independent of the grid.

Applying the estimate from Lemma 2.2 to the error equations, we obtain:

max
Ω1

|eni,j| ≤ max {|en∗,j|,max
Ω1

|en−1
i,j |}+ C1k(k + h2) (2.37)

Just as in [11], the error estimate of the correction is included since the correction is

based on the same implicit Euler step. What is left is to find a bound on the interface

error en∗ .

To that end, it is claimed that if

zn∗ = zn−1
p,j − kL

Hyb
x,y,Hz

n−1
p,j + kgn−1

p,j , (2.38)

then

|zn∗ | ≤ max
1≤i≤p−1

|zn−1
i,j |+ k|gn−1

p,j |. (2.39)
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To see this, note the following

zn∗ = zn−1
p,j − kL

Hyb
x,y,H + kgnp,j

= zn−1
p,j + αH(zn−1

p−q,j − 2zn−1
p,j + zn−1

p+q,j) + αh(z
n
p,j−1 − 2znp,j + znp,j+1)

−βH(zn−1
p+q,j − zn−1

p−q,j)− βh(znp,j+1 − znp,j−1)

−kγn−1
p,j z

n−1
p,j + kgn−1

p,j

= (αH + βH) zn−1
p−q,j + (1− 2αH − kγn−1

p,j )zn−1
p,j + (αH − βH) zn−1

p+q,j +

(αh + βh) z
n
p,j−1 − 2αhz

n
p,j + (αh − βh) znp,j+1 + kgn−1

p,j

Rewriting the equation using the assumptions yields

|zn∗ | ≤
[
(αH + βH) + (αH − βH) + (1− 2αH − kγnp,j)

]
max

i=p−q,p,p+q

{
|zn−1
i,j |

}
+ [(αh + βh) + (αh − βh)− 2αh] max

j=j−1,j,j+1
|znp,j|+ k|gn−1

p,j |

≤ max |zn−1
p,j |+ k|gn−1

p,j | (2.40)

Applying the result of the claim to en∗ leaves

|en∗ | ≤ max
1≤i≤p−1

|en−1
p,j |+ kC∗(k + h2 +H2) (2.41)

and hence

max
Ω1

|eni,j| ≤ max
Ω1

|e0
i,j|+

n∑
w=1

C ′k(k + h2 +H2)

≤ max
Ω1

|e0
i,j|+ C ′nk(k + h2 +H2) (2.42)

Assuming no error with the initial time and nk ≤ T , we have successfully shown that
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||en·,·||∞ = max {u(xi, yj, tn)− uni,j} has the following bound:

||en·,·||∞ ≤ C(k + h2 +H2) (2.43)

uniformly for 1 ≤ n ≤ N .

2.2 Algorithm 2, CEIDD-Exp1

Computationally there is a desire to try to find an algorithm that does not rely so

heavily on the implicit solve during the predictor phase of the computation. Doing

so should allow for a faster computation during the predictor phase of the scheme

by removing the small tridiagonal solver. In an attempt to remove some of the

implicit computation (backward Euler) on the interface necessary for the hybrid ex-

plicit/implicit predictor, a modification of the previous scheme is now introduced.

Since the course grid introduced in Section 2.1 is used as a basis for the new algo-

rithm, we have chosen to adopt a name for the new algorithm to relate its lineage,

CEIDD-Exp1.

Set u0
i,j = g. For n = 1, 2, . . . , N

1. Given that the interface coordinates are denoted as (xp, yj) with j = 0, . . . ,M

and H = q ∗ h for appropriate values of q we compute the interface using an

explicit predictor on the coarse grid.

(a) For j = q, . . . ,M − q, solve the system arising from

unp,j = un−1
p,j − kL

Exp1
x,y,Hu

n−1
p,j + kfn−1

p,j (2.44)
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and assign the values to the temporary placeholders un∗,j where

LExp1x,y,Hu
n−1
p,j = −αn−1

p,j (4x,Hu
n−1
p,j +4y,Hu

n−1
p,j )

+βn−1
p,j · (∇x,Hu

n−1
p,j +∇y,Hu

n−1
p,j )

+γn−1
p,j u

n−1
p,j .

(b) For j = 1, . . . , q − 1 and j = M − (q + 1), . . . ,M − 1, solve the system

arising from

unp,j = un−1
p,j − kL

Hyb
x,y,Hu

n−1
p,j + kfn−1

p,j . (2.45)

and assign the values to the temporary placeholders un∗ . The reason for

the two different approaches arises from the fact that the new predictor

uses the coarse grid in both the x - and y-directions, as seen in Figure

2.10, which causes a portion of the interface to require CEIDD-Hyb for a

relatively small number of values.

Figure 2.10: Stencils used for the predictor of CEIDD-Exp1.
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2. Solve each subdomain Ω1 and Ω2 in parallel using an implicit solver with a fine

grid.

δku
n
i,j + LBEx,y,hu

n
i,j = fni,j. (2.46)

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid

δku
n
p,j + LBEx,y,hu

n
p,j = fnp,j. (2.47)

We are able to use the same maximum principle from CEIDD-Hyb (Lemma 2.2)

leaving us to state and prove the following error estimate for CEIDD-Exp1.

Theorem 2.3 (Error Estimate for CEIDD-Exp1). Suppose u(x, y, t) ∈ C2
1(Ω) and

the following conditions hold:

kγ < 1, H ≥

√
4αk

1− γk
, and h ≤ H ≤ 2α

β
(2.48)

Then, for CEIDD-Exp1 there exists a constant c, independent of the grid, such that

for 1 ≤ i, j ≤M and 1 ≤ n ≤ N

|u(xi, yj, tn)− uni,j| ≤ c(k + h2 +H2). (2.49)

Proof. Given that we computed the error estimate for CEIDD-Hyb in Theorem 2.1,

we only concern ourselves with the error from the new interface predictor. The error

equation for those interface values, en∗ , are computed again using the Taylor series
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expansion for the one- and two-variable functions as in Theorem 2.1 to obtain:

en∗ = en−1
p,j − kL

Exp1
x,y,He

n−1
p,j + kKn

∗,j(k +H2). (2.50)

with en0,j = enM,j = eni,0 = eni,M = 0. Kn
i,j and Kn

∗,j represent real numbers depend-

ing on u, h,H, and k. Again, these numbers are uniformly bounded with constants

independent of the grid parameters. Let

C1 = max
Ω1

{|Kn
i,j| : 1 ≤ n ≤ N}

C∗ = max
Γ
{|Kn

∗,j| : 1 ≤ n ≤ N}.

A bound on en∗ again remains and we make that claim if

zn∗ = zn−1
p,j − kL

Exp1
x,y,Hz

n−1
p,j + kgn−1

p,j , (2.51)

then

|zn∗ | ≤ max
1≤i≤p−1

|zn−1
i,j |+ k|gn−1

p,j |. (2.52)
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To see this,

zn∗ = zn−1
p,j − kL

Exp1
x,y,Hz

n−1
p,j + kgn−1

p,j

= zn−1
p,j + αH(zn−1

p−q,j + zn−1
p+q,j − 4zn−1

p,j + zn−1
p,j−q + zn−1

p,j+q) +

−βH(zn−1
p+q,j − zn−1

p−q,j + zn−1
p,j+q − zn−1

p,j−q)

−kγn−1
p,j z

n−1
p,j + kgn−1

p,j

= (αH + βH) zn−1
p−q,j + (αh − βh) zn−1

p+q,j

+(1− 4αH − kγn−1
p,j )zn−1

p,j + (αH + βH) zn−1
p,j−q

+ (αh − βh) zn−1
p,j+q + kgn−1

p,j

The assumptions of the theorem lead similarly to

|zn∗ | ≤ max
Ω1

|zn−1
i,j |+ k|gn−1

p,j | (2.53)

Applying the result to en∗ leaves

|en∗ | ≤ max
Ω1

|en−1
p,j |+ kC∗(k +H2) (2.54)

and hence

max
Ω1

|eni,j| ≤ max
(i,j)∈Γ1

|e0
i,j|+

n∑
w=1

C ′k(k + h2 +H2)

≤ max
Ω1

|e0
i,j|+ C ′nk(k + h2 +H2) (2.55)

The mixture of h2 and H2 comes from using the semi-explicit scheme near the bound-

aries.
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Assuming no error with the initial time and nk ≤ T , it has been shown again that

||en·,·||∞ ≤ C(k + h2 +H2) (2.56)

uniformly for 1 ≤ n ≤ N .

2.3 Algorithm 3, CEIDD-Exp2

With this algorithm, we address a question that might arise regarding the effects of a

predictor that uses a majority of values along the interface. In an attempt to address

this possible concern of overuse of the predicted interface, we introduce a modification

of CEIDD-Exp1 by rotating the stencil so that only the center of the node remains in

the stencil and the other values come from elements in the subdomains (Figure 2.3).

We will are still required to use CEIDD-Hyb near the boundaries once again.

Figure 2.11: Stencil for interior predictor of CEIDD-Exp2.

A new maximum principle is proved along with a similar error estimate, but first

an explanation of the scheme CEIDD-Exp2.
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Set u0
i,j = g. For n = 1, 2, . . . , N :

1. Given that the interface coordinates are denoted as (xp, yj) with j = 0, . . . ,M

and H = q∗h we compute the interface using an explicit predictor on the coarse

grid.

(a) For j = q, . . . ,M − q, solve the system arising from

unp,j = un−1
p,j − kL

Exp2
x,y,Hu

n−1
p,j + kfn−1

p,j (2.57)

and assign the values to the temporary placeholders un∗,j where

LExp2x,y,Hu
n−1
p,j = −αn−1

p,j (un−1
p+q,j+q + un−1

p−q,j+q − 4un−1
p,j + un−1

p−q,j+q + un−1
p−q,j−q)/H

2

+βn−1
p,j · (un−1

p+q,j+q + un−1
p−q,j−q + un−1

p−q,j+q + un−1
p+q,j−q)/2H

+γn−1
p,j u

n−1
p,j .

(b) For j = 1, . . . , q − 1 and j = M − (q + 1), . . . ,M − 1, solve the system

arising from

unp,j = un−1
p,j − kL

Hyb
x,y,Hu

n−1
p,j + kfn−1

p,j . (2.58)

and assign the values to the temporary placeholders un∗ .

2. Solve each subdomain Ω1 and Ω2 in parallel using an implicit solver with a fine

grid.

δku
n
i,j + LBEx,y,hu

n
i,j = fni,j. (2.59)

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid
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(Figure 3).

δku
n
p,j + LBEx,y,hu

n
p,j = fnp,j. (2.60)

Figure 2.12: Stencil for corrector of CEIDD-Exp2.

Theorem 2.4 (Error Estimate for CEIDD-Exp2). Suppose u(x, y, t) ∈ C2
1(Ω) and

the following conditions hold:

kγ < 1, H ≥

√
4αk

1− γk
, and h ≤ H ≤ 2α

β
(2.61)

Then, for CEIDD-Exp2 there exists a constant c, independent of the grid, such that

for 1 ≤ i, j ≤M and 1 ≤ n ≤ N

|u(xi, yj, tn)− uni,j| ≤ c(k + h2 +H2). (2.62)

The reader should notice that the second constraint is more restrictive by a factor

of
√

2. This is due to the construction of the rotated five-point Laplacian. We turn

our attention to a maximum principle.

Lemma 2.5 (Maximum Principle for CEIDD-Exp2). Under the assumptions from
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Theorem 2.4, suppose on one subdomain Ω1 := (0, x)× (0, 1) and n = 1, . . . , N

δkz
n
i,j + LExp2x,y,hz

n
i,j = gni,j for interior points (2.63)

with zn0,j = an, znp,j = bn, zni,0 = cn and zni,M = dn where an, bn, cn and dn are constants.

Then the following estimate must hold at each time level tn:

max
Ω1

|zni,j| ≤ max {|an|, |bn|, |cn|, |dn|,max
Ω1

|zn−1
i,j |}+ kmax

Ω1

|gni,j| (2.64)

with 1 ≤ n ≤ N .

Proof. Suppose the index (r, s) is such that

|znr,s| = max
Ω1

|zni,j|. (2.65)

If r = 0 or p or s = 0 or M , the result is immediate. Therefore, suppose that (r, s) is

such that (xr, ys) is an interior point in Ω1 is chosen. Consider

1. Case 1: znr,s ≥ 0

Define αh = k
h2α

n
i,j and βh = k

2h
βni,j, then starting with

δkz
n
i,j + LExp2x,y,hz

n
i,j = gni,j, (2.66)

znr,s = zn−1
r,s + (αh − βh)znr+1,s+1 + (αh + βh)z

n
r−1,s+1

+(−4αh − kγni,j)znr,s + (αh − βh)znr+1,s−1 + (αh + βh)z
n
r−1,s+1

+kgnr,s
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Using the assumptions from Theorem 2.4,

|znr,s| ≤ |zn−1
r,s |+ (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+(−4αh − kγni,j)znr,s + (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+k|gnr,s|

= |zn−1
r,s |+ 4αh|zni,j|+ (−4αh − kγni,j)|znr,s|+ k|gnr,s|

= |zn−1
r,s | − kγni,j|znr,s|+ k|gnr,s|

≤ |zn−1
r,s |+ k|gnr,s| (2.67)

2. Case 2: znr,s < 0

Similar to the first case and Lemma 2.2,

−znr,s = −zn−1
r,s + (αh − βh)(−znr+1,s+1) + (αh + βh)(−znr−1,s+1)

+(−4αh − kγni,j)(−znr,s) + (αh − βh)(−znr+1,s−1) + (αh + βh)(−znr−1,s+1)

+k(−gnr,s)

which yields

|znr,s| ≤ |zn−1
r,s |+ (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+(−4αh − kγni,j)znr,s + (αh − βh)|znr,s|+ (αh + βh)|znr,s|

+k|gnr,s|

≤ |zn−1
r,s |+ k|gnr,s| (2.68)

Combining the trivial cases with (2.67) and (2.68) yields the result stated in (2.64)
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Proof of Theorem 2.4. With a new stencil, we need to derive new error equations

similar to what was done in the proof of Theorem 2.1, but only for those in space.

• To compute the error of 4x,hu
n
i,j +4y,hu

n
i,j, we now use different points for the

expansion:

uni+1,j+1 = uni,j +
∂

∂x
uni,j(h) +

∂

∂y
uni,j(h)

+
∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j

h2

2
+

∂2

∂y2
uni,j

h2

2
+ · · ·+O(h4) (2.69)

uni+1,j−1 = uni,j +
∂

∂x
uni,j(h) +

∂

∂y
uni,j(−h) +

∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j
−h2

2
+

∂2

∂y2
uni,j

h2

2
+ · · ·+O(h4) (2.70)

uni−1,j+1 = uni,j +
∂

∂x
uni,j(−h) +

∂

∂y
uni,j(h) +

∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j
−h2

2
+

∂2

∂y2
uni,j

h2

2
+ · · ·+O(h4) (2.71)

uni−1,j−1 = uni,j +
∂

∂x
uni,j(−h) +

∂

∂y
uni,j(−h) +

∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j

h2

2
+

∂2

∂y2
uni,j

h2

2
+ · · ·+O(h4) (2.72)

When the left side of the equalities are summed we are left with

uni+1,j+u
n
i−1,j+u

n
i,j+1+uni,j−1 = 4uni,j+

∂2

∂x2
uni,j(2h

2)+
∂2

∂y2
uni,j(2h

2)+O(h4) (2.73)

or

∂2

∂x2
uni,j(2h

2)+
∂2

∂y2
uni,j(2h

2) = uni+1,j+u
n
i−1,j+u

n
i,j+1+uni,j−1−4uni,j+O(h4). (2.74)
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The final simplification arises from dividing by 2h2.

∂2

∂x2
uni,j+

∂2

∂y2
uni,j = (uni+1,j+u

n
i−1,j+u

n
i,j+1 +uni,j−1−4uni,j)/(2h

2)+O(h2). (2.75)

• We also compute the error of ∇n
x,hu

n
i,j +∇n

y,hu
n
i,j, we use the expansion to find

uni+1,j+1 = uni,j +
∂

∂x
uni,j(h) +

∂

∂y
uni,j(h) + (2.76)

∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j

h2

2
+

∂2

∂y2
uni,j

h2

2
+O(h3) (2.77)

uni−1,j−1 = uni,j +
∂

∂x
uni,j(−h) +

∂

∂y
uni,j(−h) + (2.78)

∂2

∂x2
uni,j

h2

2
+

∂

∂x

∂

∂y
uni,j

h2

2
+

∂2

∂y2
uni,j

h2

2
+O(h3) (2.79)

By looking at the difference of uni+1,j+1 − uni−1,j−1 , we are left with

uni+1,j+1 − uni−1,j−1 =
∂

∂x
uni,j(2h) +

∂

∂y
uni,j(2h) +O(h3) (2.80)

which when simplified yields

∂

∂x
uni,j +

∂

∂y
uni,j = (uni+1,j+1 − uni−1,j−1)/2h+O(h2). (2.81)

Combining these derivations yields error equations as:

en∗ = en−1
p,j − kL

Hyb
x,y,He

n−1
p,j + kKn

∗,j(k + h2 +H2)

δke
n
i,j + LBEx,y,he

n
i,j = Kn

i,j(k + h2)

δke
n
p,j + LBEx,y,he

n
p,j = Kn

p,j(k + h2)

(2.82)

with en0,j = enM,j = eni,0 = eni,M = 0. Kn
i,j and Kn

∗,j represent real numbers depending
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on u, h,H, and k and are uniformly bounded.

Once again, we only concern ourselves with the error from the new interface

predictor as the subdomain solve is backward Euler and the corrector is similar as

the predictor. To that end we look at:

en∗ = en−1
p,j − kL

Exp2
x,y,He

n−1
p,j + kKn

∗,j(k +H2). (2.83)

Let

C1 = max
Ω1

{|Kn
i,j| : 1 ≤ n ≤ N}

C∗ = max
Γ
{|Kn

∗,j| : 1 ≤ n ≤ N}

where the constants are independent of the grid.

To obtain our bound on the interface error this time,

zn∗ = zn−1
p,j − kL

Exp2
x,y,H + kgnp,j

= zn−1
p,j + αH(zn−1

p−q,j+q + zn−1
p+q,j+q − 4zn−1

p,j + zn−1
p+q,j−q + zn−1

p−q,j+q) +

−βH(zn−1
p+q,j+q − zn−1

p−q,j−q + zn−1
p−q,j+q − zn−1

p+q,j−q)

−kγn−1
p,j z

n−1
p,j + kgn−1

p,j

= (αH + βH) zn−1
p−q,j+q + (αh − βh) zn−1

p+q,j+q

+(1− 4αH − kγn−1
p,j )zn−1

p,j + (αH + βH) zn−1
p−q,j−q

+ (αh − βh) zn−1
p−q,j+q + kgn−1

p,j
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The assumptions (2.61) lead to

|zn∗ | ≤ max
Γ
|zn−1
i,j |+ k|gn−1

p,j |. (2.84)

Applying the result to en∗ leaves

|en∗ | ≤ max
Ω1

|en−1
p,j |+ kC∗(k +H2) (2.85)

and hence

max
Ω1

|eni,j| ≤ max
Ω1

|e0
i,j|+

n∑
w=1

C ′k(k + h2 +H2)

≤ max
Ω1

|e0
i,j|+ C ′nk(k + h2 +H2) (2.86)

The mixture of h2 and H2 comes from using the semi-explicit scheme near the bound-

aries. Therefore, assuming no error with the initial time and nk ≤ T , it has been

shown that

||en·,·||∞ ≤ C(k + h2 +H2) (2.87)

uniformly for 1 ≤ n ≤ N .

2.4 Algorithm 4, CEIDD-Lex

Up to this point, we have introduced three two-dimensional algorithms which work by

modifying the computation of the predictor on the interface of the artificial boundary

Γ. Ideally, one would hope that there might be a simpler method to compute the

interface. Recall from Section 1.4 that Mu, Du and Wu [15] did find a method

that allowed for extrapolation, a much simpler computation, along the interface.



64

Unfortunately, they were unable to obtain linear extrapolation. At this point we

introduce CEIDD-Lex, a scheme that allows use of linear extrapolation for most

points along the interface, and state the following corollary:

Corollary 2.6 (Equivalence of CEIDD-Lex and CEIDD-Exp1). The scheme, defined

by using the predictor on the interface of linear extrapolation is equivalent to the

predictor found in CEIDD-Exp1.

We state the algorithm CEIDD-Lex in its two-dimensional form.

Set u0
i,j = g. For n = 1, 2, . . . , N :

1. Similar to CEIDD-Exp1 and CEIDD-Exp2, we have a two-part predictor using

CEIDD-Hyb near the boundaries (Figure 2.13):

(a) For i = 1, . . . , q − 1 and i = M − (q + 1), . . . ,M − 1, solve the system

arising from

unp,j = un−1
p,j − kL

Hyb
x,y,Hu

n−1
p,j + kfn−1

p,j (2.88)

and assign the values to the temporary placeholders un∗ .

(b) For i = q, . . . ,M − q, solve the system arising from

unp,j = 2un−1
p,j − un−2

p,j + kfn−1
p,j (2.89)

and assign the values to the temporary placeholders un∗ .

2. Solve each subdomain Ω1 and Ω2 in parallel using an implicit solver with a fine

grid.

δku
n
i,j + LBEx,y,hu

n
i,j = fni,j. (2.90)
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Figure 2.13: Stencils used for predictor with CEIDD-Lex.

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid.

δku
n
p,j + L∗unp,j = fnp,j. (2.91)

This corollary allows for the use of a no-communication predictor on the interior

portion of the interface (j = q, . . . ,M − q). Again, while not perfect, the scheme

tries to take advantage of the ability to be applied to convection-diffusion equations

something that the extrapolation technique of Du, Mu and Wu [15] were not able to

accomplish.

Proof of Corollary 2.6. If we look at the predictor from CEIDD-Exp1

un = un−1 + kLExp1un−1 + kgn−1. (2.92)

The previous time-step correction has the form

un−1 = un−2 + kLExp1un−1 + kgn−1. (2.93)
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Solving the last equation for kLExp1un−1 yields

kLExp1un−1 = un−1 − un−2 − kgn−1. (2.94)

Substituting (2.94) into (2.92) gives

un = un−1 +
[
un−1 − un−2 − kgn−1

]
+ kgn−1

= 2un−1 − un−2. (2.95)

Hence, the conclusion that CEIDD-Exp1 is equivalent to linear extrapolation (2.95).

Because we are using the pointwise manipulation of the interface, we are able to

arrive at a scheme that shares the properties of maximum principle and error estimate

by recognizing the relationship between the predictor and corrector of different time

levels.
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Chapter 3

Numerical Results

3.1 Setup

In this section, we look at experimental results of using each of the algorithms pre-

sented in Chapter 2 using four model problems. The experiments were run using

MPICH, version 1.2.7p via the GCC compiler under LinuxMint 5. The timings were

run on a machine using an Intel Core 2 Duo CPU running at 2.4 GHz and having 3

GB of memory. Due to circumstances beyond control, the original cluster of machines

that was to be used for the experiments was decommissioned prior to the code being

finished. While this caused some limitation to the size of mesh refinement we could

use in the experiments, we were able to gather enough data to to make conclusions

regarding the results.

Because we are using a single machine with a dual-core processor, we do not have

some of the communication cost that would come with a cluster which would have

the nodes connected via ethernet. This is due to the decreased communication cost

moving data from one node to another. In a dual-core setup as ours, the communi-
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cation is minimized because we using a shared memory architecture. This drop in

communication should manifest itself in the computational timings of the examples

coming close to halving the time necessary to run the experiment when doubling the

number of subdomains (processors).

To demonstrate the performance of the new algorithms, we recall the general

parabolic differential equation which we have been working:

∂u/∂t+ Lu = f (3.1)

where L is a uniformly elliptic operator which has the following form

Lu = −
d∑

i,j=1

∂

∂xi
(αij(x)

∂u

∂xj
) +

d∑
i=1

βi(x)
∂u

∂xi
+ γ(x)u (3.2)

and the coefficients are continuous on the domain and αij(x) = αji(x) for all i, j and

x.

The four test problems were culled from other papers or were problems that were

slightly modified to better fit the memory constraints of the hardware. The model

problems start with an example of the heat equation moving to two reaction-diffusion

equations, one stable and the other unstable. We then conclude with an example

of a convection-diffusion problem. Each example will give a brief description of the

problem, including a graph of the solution. Then tables of the maximum errors are

given for each of the five algorithms (backward Euler, CEIDD-Hyb, Exp1, Exp2 and

Lex).

The experiments were run with two and four processors by first fixing the time

step at 4t = 0.001 and letting h → 0 to see the effect of the coarse grid and then

looking at the results of letting h → 0 while defining the time step as 4t = h2 to
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make sure the convergence is what was predicted in Chapter 2. Each section then

gives a table relating the run times of each algorithm under the same conditions and

finishes with observations obtained from the experiment.

3.2 Example 1

The first example to be examined was chosen to test the algorithms with a known

set of results. In this case, a standard heat equation with homogeneous boundary

conditions was used as seen in [48]:

ut =
1

π2
4u

u(x, y, 0) = u0(x, y)

on the square domain of Ω = [0, 1]×[0, 1] with true solution u(x, y, t) = e−2t sin (πx) sin (πy).

We look at the results at T = 1.0 and see the graph of the solution in Figure 3.1.

We see in Table 3.1 and Table 3.2 that the errors keep pace to that of the serial

backward Euler using either two or four processors. In particular, CEIDD-Exp2 lags

behind in performance compared to the other schemes. Notice the necessity to adjust

the coarse grid as h → 0 by looking at the change of q (q = H/h). This control

of the coarse grid allows us to be less concerned with the size of the time step for

the explicit portion of the predictor. Lastly, we point out that in this example,

CEIDD-Lex outperforms the other schemes including backward Euler. This is a very

welcomed result.

Next, we turn our attention to examine the times in Table 3.3 and see that the

parallelized algorithms cut the run times by close to 45% of the serial backward Euler.

The 5% discrepancy from the optimal halving can be attributed to the communication
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Figure 3.1: Graph of u(x, y, t) = e−2t sin (πx) sin (πy) at T = 1.0.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.20 2 2.508e-03 2.520e-03 2.532e-03 2.630e-03 2.506e-03
0.05 0.10 2 8.278e-04 8.329e-04 8.379e-04 8.967e-04 8.229e-04
0.025 0.05 2 4.098e-04 4.087e-04 4.076e-04 4.373e-04 3.993e-04
0.01 0.05 5 2.929e-04 2.927e-04 2.926e-04 3.552e-04 2.660e-04
0.005 0.045 9 2.761e-04 2.735e-04 2.708e-04 3.463e-04 2.236e-04

Table 3.1: Maximum Errors for Example 1 at T = 1.0 and 4t = 0.001 with 2
Processors.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.05 0.10 2 8.278e-04 8.367e-04 8.456e-04 9.492e-04 8.192e-04
0.025 0.05 2 4.098e-04 4.079e-04 4.060e-04 4.572e-04 3.918e-04
0.01 0.05 5 2.929e-04 2.926e-04 2.924e-04 3.989e-04 2.472e-04
0.005 0.045 9 2.761e-04 2.716e-04 2.671e-04 3.949e-04 1.860e-04

Table 3.2: Maximum Errors for Example 1 at T = 1.0 and 4t = 0.001 with 4
Processors.
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necessary for the computation of the interface values between the two processors as

mentioned in 1.2.

4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 0
0.05 0 0 1 0 0
0.025 1 1 0 1 1
0.01 24 14 14 14 14
0.005 309 176 175 176 175

Table 3.3: Processing Times (in seconds) for Example 1 with T = 1.0 and 4t = 0.001
with 2 Processors.

When we look at running the algorithms with a time step that is scaling with

the change in the spatial mesh (4t = 0.5h), we see similar results. Those being

CEIDD-Hyb and Exp1 being close in performance to the serial algorithm, CEIDD-

Exp2 falling behind in performance and Lex outperforming all the algorithms. It

seems that reducing the use subdomain elements actually improves the performance

of the algorithm as seen in Table 3.4 and Table 3.5.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.40 4 1.554e-02 1.620e-02 1.667e-02 2.439e-02 1.260e-02
0.05 0.25 5 7.267e-03 7.288e-03 7.308e-03 1.717e-02 4.537e-03
0.025 0.175 7 3.508e-03 3.510e-03 3.511e-03 8.178e-03 2.042e-03
0.01 0.10 10 1.373e-03 1.342e-03 1.310e-03 2.472e-03 7.670e-04
0.005 0.075 15 6.817e-04 6.760e-04 6.703e-04 1.184e-03 3.772e-04

Table 3.4: Maximum Errors for Example 1 at T = 1.0 and 4t = 0.5h with 2 Proces-
sors.

In any use of the algorithms, we see in Table 3.6 similar performance gains by

implementing the parallel code on two processors.
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4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.40 4 1.554e-02 3.341e-02 3.368e-02 6.359e-02 4.182e-02
0.05 0.25 5 7.267e-03 7.303e-03 7.336e-03 1.152e-02 2.540e-03
0.025 0.175 7 3.508e-03 3.511e-03 3.512e-03 1.133e-02 9.224e-04
0.01 0.10 10 1.373e-03 1.320e-03 1.266e-03 3.229e-03 2.985e-04
0.005 0.075 15 6.817e-04 6.720e-04 6.624e-04 1.530e-03 1.414e-04

Table 3.5: Maximum Errors for Example 1 at T = 1.0 and 4t = 0.5h with 4 Proces-
sors.

4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 0
0.05 0 0 0 0 0
0.025 1 1 1 1 1
0.01 19 11 11 11 11
0.005 287 160 160 160 160

Table 3.6: Processing Times (in seconds) for Example 1 with T = 1.0 and 4t = 0.5h
with 2 Processors.

3.3 Example 2

The next example examined is a reaction-diffusion equation. The reaction-diffusion

equation takes the parabolic differential equation with β = 0. These type of equations

model how the concentration of one or more substances distributed in space change

under the influence of the local chemical reaction in which substances are converted

into one another and the diffusion which cause the spread of substances into space.

The can be used in a variety of situations from biology (Fisher’s equation that was

used to describe the spread of biological processes) to recent developments in pattern

formations (finding fronts, spirals, targets, hexagons and stripes).

The example chosen is similar to that in [48] adjusted to utilize the square domain
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of Ω = [0, 1]× [0, 1]:

ut = 4u+ 8u

u(x, y, 0) = u0(x, y)

and the true solution is u(x, y, t) = e−2t cos(3x+y). We look at the results at T = 1.0

and see the graph of the solution in Figure 3.3.

Figure 3.2: Graph of u(x, y, t) = e−2t cos(3x+ y) at T = 1.0.

Looking at Tables 3.7 and 3.8, we see that our parallel algorithms keep up with

the serial backward Euler, but not with the same precision as in Example 3.2. Again,

the one result that yields a positive response is the implementation of the CEIDD-

Lex algorithm. The errors come in under those obtained from the serial program and

easily outperforms the other parallel algorithms.
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We take a moment to look at the relationship with coarse grid under the new

problem. We notice that the ability to modify the coarse grid is necessary as the

reaction term forces us to implement a more coarse grid to satisfy the constraints of

the theorems. This ability to adapt to a given type of problem is a positive aspect

that should not be underestimated. To do this with the different types of parabolic

PDEs is another aspect that the reader should be reminded of as previously published

results do not allow for these extensions.

With the constraints and implementation of the coarse grid, we are able to obtain

consistency without adding the extra time steps that occur from the explicit portion

of the algorithms giving the user the flexibility to tailor the time steps with what

is reasonable. This is particularly impressive considering the fact that we are using

linear extrapolation in the last algorithm.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.20 2 5.941e-04 6.437e-04 6.476e-04 6.954e-04 5.967e-04
0.05 0.10 2 1.647e-04 1.782e-04 1.841e-04 2.048e-04 1.630e-04
0.025 0.075 3 5.408e-05 6.357e-05 7.292e-05 9.202e-05 5.040e-05
0.01 0.07 7 2.315e-05 3.482e-05 4.884e-05 7.157e-05 1.474e-05
0.005 0.065 13 1.873e-05 2.730e-05 4.181e-05 6.231e-05 1.165e-05

Table 3.7: Maximum Errors for Example 2 at T = 1.0 and 4t = 0.001 with 2
Processors.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.05 0.10 2 1.674e-04 2.000e-04 2.154e-04 3.288e-02 1.601e-04
0.025 0.075 3 5.408e-05 7.800e-05 9.972e-05 2.647e-04 4.710e-05
0.01 0.07 7 2.315e-05 5.039e-05 7.732e-05 1.389e-04 1.262e-05
0.005 0.065 13 1.873e-05 3.895e-05 6.670e-05 1.203e-04 1.125e-05

Table 3.8: Maximum Errors for Example 2 at T = 1.0 and 4t = 0.001 with 4
Processors.

In the timings found in Table 3.9, we find ourselves again at an approximately
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45% decrease in the times necessary for the computations.

4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 0
0.05 1 1 0 1 0
0.025 6 3 4 3 3
0.01 186 101 101 101 102
0.005 2783 1481 1473 1476 1473

Table 3.9: Processing Times (in seconds) for Example 2 with T = 1.0 and 4t = 0.001
with 2 Processors.

This experiment yields the greatest variance of errors out of the four examples

and when we allow for 4t to be equal to 0.5h, only CEIDD-Hyb comes close to the

result of the serial computation and it is even worse off when using four processors

as can be seen in Table 3.11.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.60 6 1.466e-03 1.905e-02 1.905e-02 3.402e-02 1.905e-02
0.05 0.40 8 5.889e-04 3.462e-03 4.492e-03 1.126e-02 2.337e-03
0.025 0.25 10 2.547e-04 9.208e-04 1.425e-03 3.876e-03 2.440e-04
0.01 0.15 15 9.247e-05 2.269e-04 3.842e-04 7.945e-04 2.209e-04
0.005 0.105 21 4.467e-05 8.929e-05 1.491e-04 2.736e-04 1.266e-04

Table 3.10: Maximum Errors for Example 2 at T = 1.0 and 4t = 0.5h with 2
Processors.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.60 6 1.466e-03 4.787e-02 4.878e-02 4.386e-02 4.516e-02
0.05 0.40 8 5.889e-04 3.052e-02 2.808e-02 6.318e-03 2.365e-02
0.025 0.25 10 2.547e-04 1.496e-03 2.450e-03 5.960e-02 7.112e-04
0.01 0.15 15 9.247e-05 3.612e-04 6.613e-04 1.326e-03 4.958e-04
0.005 0.105 21 4.467e-05 1.368e-04 2.498e-04 4.468e-04 2.716e-04

Table 3.11: Maximum Errors for Example 2 at T = 1.0 and 4t = 0.5h with 4
Processors.
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4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 0
0.05 0 1 0 0 0
0.025 4 1 2 2 2
0.01 168 80 79 79 79
0.005 2677 1342 1345 1341 1336

Table 3.12: Processing Times (in seconds) for Example 2 with T = 1.0 and4t = 0.5h
with 2 Processors.

3.4 Example 3

We use an unstable reaction-diffusion problem to gauge the algorithms ability to

handle a situation that the solution is not uniformly bounded. In this case, we look

to the following problem:

ut = 4u+ (1 + 5π2)u

u(x, y, 0) = u0(x, y)

on the square domain of Ω = [0, 1]×[0, 1] with true solution u(x, y, t) = et sin (2πx) sin (πy).

Again, we look at the results at T = 1.0 and see the graph of the solution in Figure

3.4.

Since one solution is u(x, y, t) = et sin (2πx) sin (πy), we see that there is no uni-

form bound due to the exponential term as time progresses and hence is unstable.

What is seen in Table 3.13 is, with a relatively conservative step size, the parallel

algorithms outperform backward Euler by a large margin after the initial grid size of

4x = 0.10. Yet, the stability of the solution affects the results when we increase the

number of processors. While CEIDD-Lex continues to yield similar results with four

processors, CEIDD-Exp2 cannot seem to regain its efficiency.
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Figure 3.3: Graph of u(x, y, t) = et sin (2πx) sin (πy) at T = 1.0.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.20 2 7.547e+00 7.543e+00 7.543e+00 7.543e+00 7.543e+00
0.05 0.10 2 1.130e+00 1.117e+00 1.121e+00 1.121e+00 1.121e+00
0.025 0.075 3 3.238e-01 2.453e-01 2.474e-01 2.474e-01 2.473e-01
0.01 0.07 7 2.753e-01 3.787e-02 3.801e-02 4.038e-02 3.924e-02
0.005 0.65 13 3.429e-01 1.252e-02 1.231e-02 1.234e-02 1.131e-02

Table 3.13: Maximum Errors for Example 3 at T = 1.0 and 4t = 0.001 with 2
Processors.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.20 2 7.547e+00 9.870e+11 9.337e+11 6.284e+11 5.604e+11
0.05 0.10 2 1.130e+00 1.663e+00 1.645e+00 2.803e+00 1.121e+00
0.025 0.075 3 3.238e-01 6.622e-01 6.470e-01 1.392e+00 2.479e-01
0.01 0.07 7 2.753e-01 5.131e-01 4.995e-01 1.307e+00 4.149e-02
0.005 0.65 13 3.429e-01 4.349e-01 4.209e-01 1.124e+00 1.156e-02

Table 3.14: Maximum Errors for Example 3 at T = 1.0 and 4t = 0.001 with 4
Processors.
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In regards to the timings in Table 3.15, the results are consistent to what has been

shown in Example 1 and 2.

4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 1
0.05 0 1 0 0 0
0.025 6 3 3 3 3
0.01 172 93 95 94 94
0.005 2513 1314 1312 1314 1315

Table 3.15: Processing Times (in seconds) for Example 3 with T = 1.0 and4t = 0.001
with 2 Processors.

This example had some interesting results, as can be seen in Table 3.16 and Table

3.17, where the errors performance of every parallel algorithm outperformed their

serial counterpart. Particularly noting the improvement when using four processors,

the algorithms were able to handle the unstable problem quite well.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.30 3 9.586e+00 8.320e+00 7.820e+00 7.813e+00 7.808e+00
0.05 0.15 3 1.160e+00 1.125e+00 1.125e+00 1.125e+00 1.125e+00
0.025 0.075 3 2.915e-01 2.467e-01 2.468e-01 2.468e-01 2.468e-01
0.01 0.03 3 8.552e-02 3.856e-02 3.852e-02 3.850e-02 3.855e-02
0.005 0.015 3 5.648e-02 1.019e-02 1.019e-02 1.019e-02 1.019e-02

Table 3.16: Maximum Errors for Example 3 at T = 1.0 and 4t = 0.5h with 2
Processors.

4x H q BEuler Hyb Exp1 Exp2 Lex
0.10 0.30 3 9.586e+00 7.346e+16 1.477e+14 2.090e+14 2.063e+13
0.05 0.15 3 1.160e+00 5.470e+00 4.959e+00 1.863e+01 1.211e+00
0.025 0.075 3 2.915e-01 5.395e-01 5.372e-01 1.056e+00 2.461e-01
0.01 0.03 3 8.552e-02 6.260e-02 4.800e-02 8.900e-02 4.615e-02

Table 3.17: Maximum Errors for Example 3 at T = 1.0 and 4t = 0.5h with 4
Processors.
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4x BEuler Hyb Exp1 Exp2 Lex
0.10 0 0 0 0 0
0.05 1 1 0 1 0
0.025 6 3 3 3 3
0.01 248 128 128 129 128
0.005 3895 2046 2042 2058 2062

Table 3.18: Processing Times (in seconds) for Example 3 with T = 1.0 and4t = 0.5h
with 2 rocessors.

3.5 Example 4

Lastly, the convection-diffusion problem describes the physical phenomena where par-

ticles of energy are transferred inside a physical system due to two processes: diffusion

and convection. Convection refers to the movement of molecules within fluids. In one

of the two major types of heat convection, the heat is carried passively by a fluid

motion (sometimes called heat advection). The other type of convection occurs when

the heating itself causes the fluid motion by expansion or buoyancy force (called nat-

ural convection). The last example presented is a convection-diffusion problem based

on an example from [48]:

ut = 4u+ 9.9 sin(x)ux − 9.9 cos(x)u

u(x, y, 0) = u0(x, y)

on the domain Ω = [0, 2π]×[0, π] and the true solution is u(x, y, t) = e−2t sin(x) sin(y).

The graph of the solution is given in Figure 3.4 at T = 1.0.

In this example, we do not see much variation in the errors in comparison to the

serial version. In fact, with two processors for 4t = 0.001, eight decimal places were

needed to see any difference in the error. It is not until we look at Table 3.20 with
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Figure 3.4: Graph of u(x, y, t) = e−2t sin(x) sin(y) at T = 1.0.

four processors that we see some variations in the errors. In this case, each of the

parallel algorithms performs better with error on time with CEIDD-Lex once again

working the best.

4x H q BEuler Hyb Exp1 Exp2 Lex
π/10 π/5 2 2.176e-02 2.176e-02 2.177e-02 2.176e-02 2.176e-02
π/20 π/10 2 5.318e-03 5.318e-03 5.318e-03 5.318e-03 5.318e-03
π/40 π/20 2 1.514e-03 1.514e-03 1.514e-03 1.514e-03 1.514e-03
π/100 3π/10 3 4.683e-04 4.684e-04 4.683e-04 4.683e-04 4.683e-04
π/200 π/40 5 3.199e-04 3.199e-04 3.199e-04 3.199e-04 3.199e-04

Table 3.19: Maximum Errors for Example 4 at T = 1.0 and 4t = 0.001 with 2
Processors.

Even with a larger domain, the results of the algorithms hold up well in comparison

to the serial algorithm yielding a increase of speed close to 47%.
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4x H q BEuler Hyb Exp1 Exp2 Lex
π/10 π/5 2 2.176e-02 2.176e-02 2.176e-02 2.175e-02 2.176e-02
π/20 π/10 2 5.318e-03 5.318e-03 5.318e-03 5.318e-03 5.318e-03
π/40 π/20 2 1.514e-03 1.514e-03 1.514e-03 3.588e-03 1.514e-03
π/100 3π/10 3 4.683e-04 4.677e-04 4.672e-04 5.763e-03 4.662e-04
π/200 π/40 5 3.199e-04 3.190e-04 3.182e-04 3.182e-04 3.159e-04

Table 3.20: Maximum Errors for Example 4 at T = 1.0 and 4t = 0.001 with 4
Processors.

4x BEuler Hyb Exp1 Exp2 Lex
π/10 1 0 0 0 0
π/20 1 1 1 1 0
π/40 3 1 1 1 2
π/100 57 28 28 29 28
π/200 703 380 375 375 381

Table 3.21: Processing Times (in seconds) for Example 4 with T = 1.0 and4t = 0.001
with 2 Processors.

In Table 3.22 and Table 3.23 we see that the results hold, but Exp2 continues to

have problems scaling to more processors. While the errors are decreasing it is not

near the rate of the other algorithms.

4x H q BEuler Hyb Exp1 Exp2 Lex
π/10 π/5 2 3.445e-02 3.455e-02 3.455e-02 3.455e-02 3.455e-02
π/20 π/10 2 1.172e-02 1.175e-02 1.175e-02 1.175e-02 1.175e-02
π/40 π/20 3 4.606e-03 4.607e-03 4.607e-03 4.607e-03 4.607e-03
π/100 π/50 5 1.548e-03 1.548e-03 1.548e-03 1.548e-03 1.548e-03
π/200 π/100 7 7.254e-04 7.254e-04 7.254e-04 7.254e-04 7.254e-04

Table 3.22: Maximum Errors for Example 4 at T = 1.0 and 4t = 0.5h with 2
Processors.
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4x H q BEuler Hyb Exp1 Exp2 Lex
π/10 π/5 2 3.445e-02 3.472e-02 3.494e-02 4.339e-02 3.506e-02
π/20 π/10 2 1.172e-02 1.224e-02 1.203e-02 3.090e-02 1.169e-02
π/40 π/20 3 4.606e-03 4.657e-03 4.597e-03 2.564e-02 4.573e-03
π/100 π/50 5 1.548e-03 1.538e-03 1.531e-03 1.957e-02 1.470e-03
π/200 π/100 7 7.254e-04 7.213e-04 7.182e-04 1.372e-02 6.830e-04

Table 3.23: Maximum Errors for Example 4 at T = 1.0 and 4t = 0.5h with 4
Processors.

4x BEuler Hyb Exp1 Exp2 Lex
π/10 3 2 1 2 0
π/20 0 0 0 0 0
π/40 1 0 1 0 1
π/100 42 22 21 22 22
π/200 635 348 348 348 347

Table 3.24: Processing Times (in seconds) for Example 4 with T = 1.0 and4t = 0.5h
with 2 Processors.

3.6 Conclusions

In this chapter, we have worked to see how our four algorithms (CEIDD-Hyb, Exp1,

Exp2 and Lex) faired with four different test problems that started with the heat

equation, progressed to a stable reaction-diffusion equation and then to an unsta-

ble reaction-diffusion equation. We concluded the experiments with a convection-

diffusion example. Each of the examples were run on a dual-core processor, which

while limited by memory size, was still able to test a reasonable size discretization in

the spatial variable.

Each algorithm was implemented using C, augmented by MPICH as the library

of functions necessary to implement the message passing interface needed to send

and receive information from each subdomain, and uses the same iterative solver for

the subdomain solution at each time step. What varied was the computation of the
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interface for each algorithm. CEIDD-Hyb uses a predictor that requires the use of

an explicit finite difference scheme in the x-direction, while using an implicit scheme

along the interface.

CEIDD-Exp1, as well as the remaining algorithms, required two different schemes

to compute the interface. To implement Exp1, one must first use CEIDD-Hyb for the

first and last p nodes along the interface, while using an explicit forward Euler scheme

with the coarse grid for the remaining nodes on the interface. What changes for

CEIDD-Exp2 is the computation of the remaining interface after using Hyb. In this

instance, we created a five-point stencil that is, effectively, rotated 45◦. Everything

else is the same as the previous scheme. We then finished with CEIDD-Lex, a scheme

that is implemented by using standard linear extrapolation along the interior of the

interface.

The examples illustrate the notion of the importance of the coarse grid to offset

the fact that we are using an explicit computation along the interface. We see this

by looking at the necessity p takes on to meet the constraints of the algorithms, for

example in Tables 3.1 or Table 3.19. When looking at the results, we see that the

further we shrink the relationship of 4t ≈ h, the larger the coarse overlay must be

to compensate.

While running the experiments, the extra requirement that manifests itself in

CEIDD-Exp2 with a more strict constraint of

H ≥

√
4αk

1− γk

causes less give regarding the coarse grid and also achieved less than stellar results.

These results arose in subpar errors compared to the other schemes and also came
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through as a lack of scalability of the algorithm as seen in the results shown in Table

3.8 or Table 3.14.

In the end, it would be recommended that a user wishing to implement a domain

decomposition method should use either CEIDD-Hyb or CEIDD-Lex. While CEIDD-

Exp1 works adequately, the amount of work to modify the code would be better spent

modifying the code to use CEIDD-Lex and yield better results both in error and

scalability.
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Chapter 4

Open Problems

4.1 Open Problems

One immediate problem that one could investigate deals with the types of differential

equations we worked with, in this case linear. It would be extremely useful to extend

these results to their most general instance with the inclusion of non-linear equations.

Developing these ideas non-linear problems in mind would increase the usefulness of

the algorithms to a much larger class of problems.

Another immediate consequence that should be explored is the sensitivity of the

constraints to the problems. In Table 4.1, we look at CEIDD-Hyb and CEIDD-Lex

with the heat equation from Example 1 at 4t = 0.001, h = 0.005 and vary the value

of q = H/h which controls the coarse grid. Recall from Chapter 3, the actual value

to be assigned to q in this case should have been q = 9.

From Table 4.1, it seems that our constraint on the value of H may be a little

stronger than needed for our problem. We do have reinforcement that the coarse

grid is important as we see in the difference of the first two lines in the table. While
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q Hyb Error Hyb Timing Lex Error Lex Timing
1 1.353e-01 449 1.353e-01 282
2 2.675e-04 179 2.235e-04 174
3 2.673e-04 175 2.235e-04 176
4 2.670e-04 178 2.235e-04 176
5 2.673e-04 178 2.235e-04 174
6 2.680e-04 177 2.235e-04 176
7 2.680e-04 177 2.236e-04 175
8 2.711e-04 176 2.236e-04 177
9 2.764e-04 175 2.236e-04 176

Table 4.1: Errors and Timings for Example 1 with 2 Processors Varying the Coarse
Grid Size.

CEIDD-Lex seems a little more resilient to those issues (smaller error and less time)

either method benefitted from the implementation of the coarse grid.

Another direction of this work is to use the coarse grid to extend other methods

that use the coarse grid notion. In Zhang and Shen [47], the authors propose another

method of computing the interface of the one-dimensional heat equation by developing

Saul’yev’s asymmetric scheme. This scheme computes the left and right interface

points of the subdomains by

δku
n
i − (1/H)(∂x,Hu

n−1
i+1 − ∂x,Huni ) = 0

δku
n
i − (1/H)(∂x,Hu

n
i+1 − ∂x,Hun−1

i ) = 0

The methods the authors used to prove their claim are very similar to Dawson, Du

and Dupont [13]. Because of this, the methods presented in this dissertation have a

good probability of extending this method to not only the more general convection-

diffusion equation, but also to a two-dimensional differential equation.

One last suggestion for extension deals with the dimension of the problem. One

would like to think that extending the ideas to three-dimensions might be simple.



87

Again, the interface values near the boundary must require the analogue of CEIDD-

Hyb which has issues when showing the maximum principle if the same proof tech-

nique is used. What has been accomplished, and is shown in the next section, is part

of the extension of CEIDD-Exp2 into three-dimensions. A nine-point Laplacian that

has been rotated similarly as the two-dimensional case is implemented to take val-

ues off the artificial boundary. While the two-diminsional algorithm did not achieve

the most consistent results, being able to prove this higher-dimensional case lends

hope that one might find a proof with CEIDD-Exp1 and through a similar result,

CEIDD-Lex.

4.2 Algorithm 5, CEIDD-Exp3d

We finish our exploration of open problems with an extension into three dimensions

by showing a proof of the error estimate for CEIDD-Exp2. In three dimensions, our

interface is now a plane. Because we have a larger interface and want to use a rotated

nine-point stencil (Figure 4.1), we need to have the analogue of CEIDD-Hyb prior to

completely extending this algorithm.

To reach a partial result, we will split the three-dimensional bounded and con-

nected domain along the plane x = xp. In three dimensions, we define the discrete

operators as the three-dimensional analogues obtained from their respective Taylor

expansions:
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Figure 4.1: Stencil produced by using CEIDD-Exp3D.

LExp3Dh = −αni,j,l43,h + βi,j,l · ∇3,h + γni,j,l

43,hu
n
i,j,l = (uni+1,j+1,l+1 + uni+1,j+1,l−1 + uni+1,j−1,l+1

+uni−1,j+1,l+1 − 8uni,j,l + uni−1,j−1,l+1 + uni−1,j+1,l−1

+uni+1,j−1,l−1 + uni−1,j−1,l−1)/4h2

∇3,hu
n
i,j,l = (uni+1,j+1,l+1 − uni+1,j+1,l−1 + uni+1,j+1,l+1 − uni+1,j+1,l−1

+uni+1,j+1,l+1 − uni+1,j+1,l−1 + uni+1,j+1,l+1 − uni+1,j+1,l−1)/4h

43,Hu
n
i,j,l = (uni+q,j+q,l+q + uni+q,j+q,l−q + uni+q,j−q,l+q

+uni−q,j+q,l+q − 8uni,j,l + uni−q,j−q,l+q + uni−q,j+q,l−q

+uni+q,j−q,l−q + uni−q,j−q,l−q)/4H
2

Next, we define the algorithm as:

Set u0
i,j,l = g, then for n = 1, 2, . . . , N :
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1. Compute the interface using an explicit predictor on the coarse grid and then

assign the values to a temporary placeholder un∗ .

unp,j,l = un−1
p,j,l − kL

Exp3D
H un−1

p,j,l + kfn−1
p,j,l (4.1)

2. Solve each subdomain Ω1,Ω2, . . . in parallel using an implicit solver with a fine

grid.

δku
n
i,j,l + LBEh uni,j,l = fni,j,l. (4.2)

3. Discard the predicted interface un∗ and correct the interface using information

from the newly computed subdomains using an implicit method on the fine grid.

δku
n
p,j,l + LC3D

h unp,j,l = fnp,j,l. (4.3)

The three-dimensional analogue of Theorem 2.4 is given as:

Theorem 4.1. Suppose u(x, t) ∈ C3
1(Ω) and the following conditions hold:

kγ < 1, H ≥

√
2αk

1− γk
, and h ≤ H ≤ 2α

β
(4.4)

Then, for CEIDD-C3D there exists a constant c, independent of the grid, such that

for 1 ≤ i, j, l ≤M and 1 ≤ n ≤ N

|u(xi, yj, zl, tn)− uni,j,l| ≤ c(k + h2 +H2). (4.5)

Next, the maximum principle for our new stencil.
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Lemma 4.2. Under the similar assumptions from Theorem 2.4, suppose on one sub-

domain Ω1 := (0, x)× (0, 1)2 and n = 1, . . . , N

δkz
n
i,j,l + LExp3Dh zni,j,l = gni,j,l for interior points (4.6)

with zn0,j,l = a1,n, znp,j,l = a2,n, zni,0,l = a3,n, zni,M,l = a4,n, zni,j,0 = a5,n, and zni,j,M = a6,n.

Then the following estimate must hold at each time level tn with 1 ≤ n ≤ N :

max
(i,j,l)∈Γ1

|zni,j,l| ≤ max { max
1≤m≤6

|am,n|, max
(i,j,l)∈Γ1

|zn−1
i,j,l |}

+k max
(i,j,l)∈Γ1

|gni,j,l|.
(4.7)

Proof. Suppose (r, s, w) ∈ Γ1 is such that

|znr,s,w| = max
(i,j,l)∈Γ1

|zni,j,l|. (4.8)

If r = 0 or p or s, w = 0 or M , the result is clear. Therefore, suppose that (r, s, w) is

such that (xr, ys, zw) is an interior point in Ω1 is chosen. Consider

1. Case 1: znr,s,w ≥ 0

Define αh =
αn

i,j,lk

4h2 and βh =
βn

i,j,lk

4h
, then starting with

δkz
n
i,j,l + LExp3Dh zni,j,l = gn−1

i,j,l , (4.9)
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znr,s,w = zn−1
r,s,w

+(αh − βh)
[
znr+1,s+1,w+1 + znr+1,s+1,w−1 + znr+1,s−1,w+1 + znr−1,s+1,w+1

]
+(αh + βh)

[
znr+1,s−1,w−1 + znr−1,s+1,w−1 + znr−1,s−1,w+1 + znr−1,s−1,w−1

]
+(−8αh − γni,j,l)znr,s,w + kgnr,s,w

Using this result on the theorem,

|znr,s,w| ≤ |zn−1
r,s,w|+ (αh − βh)[
|znr+1,s+1,w+1|+ |znr+1,s+1,w−1|+ |znr+1,s−1,w+1|+ |znr−1,s+1,w+1|

]
+(αh + βh) (4.10)[
|znr+1,s−1,w−1|+ |znr−1,s+1,w−1|+ |znr−1,s−1,w+1 + |znr−1,s−1,w−1|

]
+(−8αh − γni,j,l)|znr,s,w|+ k|gnr,s,w|

≤ |zn−1
r,s,w|+ k|gnr,s,w| (4.11)

2. Case 2: znr,s,w < 0

Again using the first case, along with the assumption that

|znr,s,w| = −znr,s,t, (4.12)

we find

|znr,s,w| ≤ |zn−1
r,s,w|+ k|gnr,s,w|. (4.13)

Once again, with the trivial cases, combining (4.11) and (4.13), we obtain the result

(4.7).
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Theorem 4.1. The error equation for the new interface value can be shown to be

en∗ = en−1
p,j,l − kL

Exp3D
H en−1

p,j,k + kKn
∗,j,l(k +H2) (4.14)

with en0,j,l = enM,j,l = eni,0,l = eni,M,l = eni,j,0 = eni,j,M = 0. Kn
i,j,l and Kn

∗,j,l represent real

numbers depending on u, h,H, and k. Let

C1 = max
(i,j,l)∈Γ1

{|Kn
i,j,l| : 1 ≤ n ≤ N}

C∗ = max
(∗,j,l)∈Γ1

{|Kn
∗,j,l| : 1 ≤ n ≤ N}

where the constants are independent of the grid.

Using similar steps from the previous schemes, a bound on en∗ again remains.

To obtain our bound on the interface error,

|zn∗ | ≤ |zn−1
p,s,w|+ (αH − βH)[
|zn−1
p+q,s+q,w+q|+ |zn−1

p+q,s+q,w−q|+ |zw−1
p+q,s−q,t+q|+ |zn−1

p−q,s+q,w+q|
]

+(αH + βH)
[
|zn−1
p+q,s−q,w−q|+ |zn−1

p−1,s+q,w−q|+ |zn−1
p−q,s−q,w+q + |zn−1

p−q,s−q,w−q|
]

+(−8αH − γn−1
p,s,w)|zn−1

p,s,w|+ k|gn−1
p,s,w|

≤ (αH − βH)
[
|zn−1
p+q,s+q,w+q|+ |zn−1

p+q,s+q,w−q|+ |zn−1
p+q,s−q,w+q|+ |zn−1

p−q,s+q,w+q|
]

+(αH + βH)
[
|zn−1
p+q,s−q,w−q|+ |zn−1

p−1,s+q,w−q|+ |zn−1
p−q,s−q,w+q + |zn−1

p−q,s−q,w−q|
]

+(1− 8αH − γn−1
p,s,w)|zn−1

p,s,w|+ k|gn−1
p,s,w|

The assumptions given in (4.4) give

|zn∗ | ≤ max
(i,j,l)∈Γ1

|zn−1
i,j,l |+ k|gn−1

p,j,l |. (4.15)
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Applying the result to en∗ leaves

|en∗ | ≤ max en−1
p,j,l + kC∗(k + h2 +H2) (4.16)

and hence

max
(i,j,l)∈Γ

|eni,j,k| ≤ max
(i,j,l)∈Γ

|e0
i,j,k|+

n∑
w=1

C ′k(k + h2 +H2)

≤ max
(i,j,l)∈Γ

|e0
i,j,k|+ C ′nk(k + h2 +H2)

Assuming no error with the initial time and nk ≤ T , we have shown

||en·,·||∞ ≤ C(k + h2 +H2) (4.17)

uniformly for 1 ≤ n ≤ N .
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Appendix A

MPICH

A.1 MPICH

This section is meant to give the reader some understanding of how programs are

written and implemented using the MPICH v1.2.7p1 standard [24]. While not a ex-

haustive explanation of the MPICH standard, it is hoped that the reader will see the

underlying strategy and structure used to program in parallel in the context of solving

the non-overlapping domain decomposition of partial differential equations numeri-

cally. The programs that are in the appendix use these strategies and structures.

The programs are written in standard C code, but the standard can work in a vari-

ety languages (with appropriate changes in syntax). There are a variety of sources that

state how to install the libraries based on the operating system used, in particular,

the Argonne National Laboratory website (http://www-unix.mcs.anl.gov/mpi/)

houses the official installation files and a lot of documentation. In regard to the ac-

tual programming, the program itself will look very similar to one that was written

in serial with a few extra blocks of code discussed below. This makes sense because

the program will be working on its own portion of the domain independently of the

other subdomains.
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To write parallel code using MPICH, there are only a few pieces that change the

structure of a serial program. Those changes can be broken down into the following

categories: header files, starting up the MPI environment, communication commands

and closing down the MPI environment. One more header must be inserted into the

code to use the MPI libraries which allow for usage of the MPI environment. The

header to be added is the mpi.h.

Starting up the MPI environment is, at minimum, a set of four commands that

opens the MPI environment and gathers information that is typically for addressing

the other processors. A typical block of MPI start-up code would look like

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Status is a variable used to make sure that communication between the pro-

cessors are working as desired during the program run. The second line, MPI_Init,

initializes the MPI execution environment. While the last two lines of the block of

code find out how many processors there are available to work with (np) and as-

sign a unique ID number to that particular processor (id). This block of code must

be in every parallel program using MPICH and must be placed prior to any MPI

commands.

Once the environment is open and working properly the program looks identical

to a serial program. It is only until the user needs to get information from another

processor, like information from one subdomain to compute the predictor or corrector,

that we have to add another block of code. The code has a ‘send’ piece for the

processor sending information and a ‘receive’ piece for the processor waiting to obtain
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the sent information. In context of the problem of the paper, a subdomain would send

their data to an adjacent subdomain so the processor associated with the subdomain

could compute the interface value. Once the interface was computed, the processor

would then send back the interface to the original sender and replace their interface

with the new one. This means we have a send/receive pair every time the interface

needed to be computed. The two commands are:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

and

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

where

• buf is the initial address of send buffer (choice)

• count is a number of elements in send/receive buffer (nonnegative integer)

• datatype is a datatype of each send/receive buffer element (handle)

• dest or source is the rank of destination/source (integer)

• tag is a message tag (integer)

• comm is a communicator (handle)

• MPI_Status checks status of MPI environment.

Truly, one of the only warnings to be given, is to make sure that the send/receive

pairs are constructed so that information is sent to the correct processor and that
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processor receives it. Without that perpetual problem, there are very few other

parallel programming difficulties.

Once the program has finished and is ready to end, one more command must be

given to successfully exit the MPI environment and close down the connections to the

other processors. That command is

int MPI_Finalize();

which can be placed immediately preceding the end of main.

In the algorithms shown in the dissertation, we used rectangular domains and de-

composed them into strip subdomains in a way so the maximum number of interfaces

on each subdomain was two. This allowed for easier logistics in programming the nec-

essary communications because each send/receive pair could be done simultaneously

for every pair of adjacent subdomains. As an example, we would instruct the even

processors to send their necessary values used in the interface computation to the

odd subdomain that is adjacent and to the right of the even one. Simultaneously, we

would instruct the odd processors to wait for those values from the even subdomain

adjacent and to the left. One benefit of constructing the subdomains this way is

the timing, in essence, only involves one send/receive command as all the processor

pairs are accomplishing their task in concert. After the information is sent, the odd

processors make the computation and the process is repeated in reverse to share the

results of the computation back to the even processors.

In terms of other issues that arise when programming in parallel, there are actually

very few that would not surface in the serial versions of the programs. Of the ones

that might come about and is of merit is the issue of trying to make the code scalable.

A couple issues that must be worked out for programs if the number of subdomains is

not fixed can be stated as (1) setting up the processors/subdomains appropriately and
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(2) obtaining the correct information from the correct subdomain for the interface

computations. In the case of setting up the processors/subdomains, the difficulty

arises from making sure that each subdomain only has their respective portion of the

overall domain. This requires some care in the indices of arrays and counters used to

fill those arrays. Luckily, once this is accomplished for one program it can be reused

for similar shaped subdomains (rectangles in the examples used in the dissertation).

A similar, but not equivalent problem occurs when attempting to obtain the cor-

rect information from adjacent subdomains. The code, to be scalable, had to be

written in such a way that it accounted for either the scenario that it was on a receiv-

ing processor (one that computed the interface) or it was the sending processor. Once

a processor started it had to have the instructions for the adjacent processor and had

to be able to state which values it needed for the computation. The similarity of

this issue with the previous deals with the necessity to reliably know the adjacent

subdomain’s structure. Again, once it was worked out once the code was able to be

reused.



Appendix B

Source Code

B.1 be2d.c

/* This program will solve the 2-d convection-diffusion equation

using Backward Euler to solve and Gauss-Seidel as the interative

matrix solver

*/

#include "stdio.h"

#include "math.h"

#include "time.h"

double uxyt(); double alpha(); double beta();

double gam(); double fct();

/* begin main */

main()

{

/* variables */

double a[6][85200], u[405][405];

double x[405], y[405];

double v[85200], v_new[85200];

double h[7]={0.1,0.05,0.025,0.01,0.005,0.0025,0.001};
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int i, j, n, mx, my, mt, p;

int dum, ii, loop;

int iter, sent, imax=20000;

double dx, dt, dy, lenx, leny, lent, H;

double alpha_coef, beta_coef;

double diff, maxerr, time1;

double dummy, old, sum, ea, es = 0.0000000000000001;

double x0, xf, y0, yf, t0, tf;

time_t start, end;

int ex = 3;

/* domain declarations */

switch(ex)

{

case 1: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 1 */

break;

case 2: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 2 */

break;

case 3: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 3 */

break;

case 4: x0 = 0.0; xf = 2.0*M_PI;

y0 = 0.0; yf = 1.0*M_PI;

t0 = 0.0; tf = 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

/* end domain declarations */

/* end variables */

lenx = xf - x0; leny = yf - y0; lent = tf - t0;
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for(loop=0;loop<=4;loop++)

{

/* grid assignment */

dx = /*M_PI**/h[loop]; dy = dx;

mx = ceil(lenx/dx); my = ceil(leny/dy);

n = (mx-1)*(my-1);

dt = 0.01/*pow(h[loop],2.0)*/; mt = ceil(lent/dt);

p = ceil(pow(2.0*dt,0.5)/dx); H=p*dx;

/* end grid assignment */

/* coefficients */

alpha_coef = dt/pow(dx,2);

beta_coef = dt/(2.0*dx);

/* end coefficients */

/* grid points */

for(i=0;i<=mx;i++) x[i] = x0 + i*dx;

for(i=0;i<=my;i++) y[i] = y0 + i*dy;

/* end grid points */

printf("x[0]=%f x[mx]=%f\ny[0]=%f y[my]=%f\n\n",x[0],x[mx],y[0],y[my]);

/* initial conditions */

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

u[i][j] = uxyt(x[i],y[j],t0);

}

}

/* end initial conditions */

/* boundary initialization */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0);

u[i][my] = uxyt(x[i],y[my],t0);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

u[0][i] = uxyt(x[0],y[i],t0);

u[mx][i] = uxyt(x[mx],y[i],t0);
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}

/* end left and right boundary */

/* end boundary initialization */

/* initializing coefficient matrix a */

for(i=1;i<=n;i++){

a[3][i] = 1.0 + 4.0*alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]) -

dt*gam(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]);

}

for(i=1;i<=n;i++){

dum=i%(mx-1);

if(dum!=1){

a[2][i] = beta_coef*

beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[2][i] = 0.0;

if(dum!=0){

a[4][i] = -beta_coef*

beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[4][i] = 0.0;

}

for(i=1;i<=n;i++){

a[1][i] = /*beta_coef*

beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])*/-

alpha_coef*alpha(x[(i-1)%(mx-1)+1]

,y[(i-1)/(mx-1)

+ 1]);

a[5][i] = /*-beta_coef*

beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])*/-
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alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

}

for(i=0;i<=mx-2;i++){

a[1][i+1] = 0.0;

a[5][n-i] = 0.0;

}

/* end intializing coefficient matrix a */

start = time(NULL);

for(ii=1;ii<=mt;ii++){

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

v[dum] = u[i][j] +

dt*fct(x[i],y[j],t0+ii*dt);

dum++;

}

}

/* boundary values */

for(i=1;i<=mx-1;i++){

/* horizontal - bottom */

v[i] = v[i] + (alpha_coef*

alpha(x[i],y[1],t0+ii*dt) )*

uxyt(x[i],y0,t0+ii*dt);

/* horizontal - top */

v[(n-mx+1+i)] = v[(n-mx+1+i)] +

(alpha_coef*

alpha(x[i],y[my-1],t0+ii*dt)/*+

beta_coef*

beta(x[i],y[my-1],t0+ii*dt)*/)*

uxyt(x[i],yf,t0+ii*dt);

}

for(i=1;i<=my-1;i++){

/* vertical - left */

v[1+((i-1)*(mx-1))] =
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v[1+((i-1)*(mx-1))] +

(alpha_coef*

alpha(x[1],y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

uxyt(x0,y[i],t0+ii*dt);

/* vertical - right */

v[(i*(mx-1))] = v[(i*(mx-1))] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

uxyt(xf,y[i],t0+ii*dt);

}

/* end boundary values */

/* gauss-seidel solver */

for(i=1;i<=n;i++) v_new[i]=v[i];

iter = 1;

sent = 0;

while((sent != 1) && (iter <= imax)){

sent = 1;

maxerr = 0.0;

for(i=1;i<=n;i++){

old=v_new[i];

sum = 0.0;

sum = a[1][i]*v_new[i-(mx-1)] +

a[2][i]*v_new[i-1] +

a[4][i]*v_new[i+1] +

a[5][i]*v_new[i+(mx-1)];

v_new[i] = (v[i]-sum)/a[3][i];

if((sent = 1) && (v_new[i] != 0.0)){

ea = fabs((v_new[i]-old)/v_new[i]);

if(ea > maxerr) maxerr = ea;

}

}

iter = iter + 1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel solver */

/* putting v back into u */
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dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

u[i][j] = v_new[dum];

dum++;

}

}

/* end putting v back into u */

} /* end solver */

end = time(NULL);

time1 = end - start;

/* update boundaries */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y0,t0+(ii-1)*dt);

u[i][my] = uxyt(x[i],yf,t0+(ii-1)*dt);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

u[0][i] = uxyt(x0,y[i],t0+(ii-1)*dt);

u[my][i] = uxyt(xf,y[i],t0+(ii-1)*dt);

}

/* end left and right boundary */

/* ending update boundaries */

/* error computation */

maxerr = 0.0;

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

diff = fabs(uxyt(x[i],y[j],t0+(ii-1)*dt)

-u[i][j]);

if(diff > maxerr) maxerr = diff;

}

}

printf("time=%.1f maxerr= %.16e\n",time1,maxerr);

/* end error computation */

/* output loop */

/* for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){
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printf("%.5f\t%.5f\t%.10f\t%.10f\t%.16e\n"

,x[i],y[j],

uxyt(x[i],y[j],(ii-1)*dt),u[i][j],

(uxyt(x[i],y[j],(ii-1)*dt)-u[i][j]));

}

}

/* end output loop */

printf("\n\n");

} /* end increment loop */

}

/* end main */

/* function definitions */

double uxyt(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return

exp(-2.0*t)*sin(M_PI*x)*sin(M_PI*y);

break;

case 2: return exp(-2.0*t)*cos(3.0*x+y);

break;

case 3: return

exp(t)*sin(2.0*x*M_PI)*sin(y*M_PI);

break;

case 4: return exp(-2.0*t)*sin(x)*sin(y);

break;

default: printf("fix the example number\n");

}

}

double alpha(double x, double y)

{

int ex = 3;

switch(ex)
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{

case 1: return 1.0/(M_PI * M_PI);

/* example 1 */

break;

case 2: return 1.0; /* example 2 */

break;

case 3: return 1.0; /* example 3 */

break;

case 4: return 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double beta(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 9.9*sin(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double gam(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */
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break;

case 2: return 8.0; /* example 2 */

break;

case 3: return (1.0+5.0*M_PI*M_PI);

/* example 3 */

break;

case 4: return -9.9*cos(x);

/* example 4 */

break;

default: printf("fix the example number\n");

}

}

double fct(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 0.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

B.2 ceidd hyb.c

/* This program will solve the 2-d convection-diffusion equation

using Backward Euler to solve and Gauss-Seidel as the interative

matrix solver and hyb on the interface

*/

#include "mpi.h"
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#include "stdio.h"

#include "math.h"

#include "time.h"

double uxyt(); double alpha(); double beta();

double gam(); double fct();

/* begin main */

main(int argc, char *argv[])

{

/* variables */

double a[6][72200], u[405][405];

double x[405], y[405];

double v[72200], v_new[72200];

double

h[7]={0.1,0.05,0.025,0.01,0.005,0.0025,0.001};

/* parallel variables */

double b[4][405], left[405], mid[405], right[405];

double send[405], recv[405], v1[405], v1_new[405];

double predict[405], temp[405];

double alphaH, betaH;

int np, id;

/* end parallel variables */

int i, j, n, mx, my, mt, p;

int dum, ii, loop;

int iter, sent, imax=20000;

double dx, dt, dy, lenx, leny, lent, H;

double alpha_coef, beta_coef;

double diff, maxerr, time1;

double dummy, old, sum, ea, es =

0.0000000000000001;

double x0, xf, y0, yf, t0, tf;

time_t start, end;

int ex = 3;

/* domain declarations */
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switch(ex)

{

case 1: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 1 */

break;

case 2: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 2 */

break;

case 3: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 3 */

break;

case 4: x0 = 0.0; xf = 2.0*M_PI;

y0 = 0.0; yf = 1.0*M_PI;

t0 = 0.0; tf = 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

/* end domain declarations */

/* end variables */

lenx = xf - x0; leny = yf - y0; lent = tf - t0;

/* MPI startup */

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

/* end MPI startup */

for(loop=0;loop<=5;loop++)

{

/* grid assignment */

dx = /*M_PI**/h[loop]; dy = dx;

mx = ceil(lenx/(np*dx)); my = ceil(leny/dy);

n = (mx-1)*(my-1);

dt = 0.01/*pow(h[loop],2.0)*/; mt = ceil(lent/dt);

p = ceil(pow(2.0*dt,0.5)/dx); H=p*dx;

/* end grid assignment */
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/* coefficients */

alpha_coef = dt/pow(dx,2);

beta_coef = dt/(2.0*dx);

alphaH = dt/pow(H,2);

betaH = dt/(2.0*H);

/* end coefficients */

/* grid points */

for(i=0;i<=mx;i++) x[i] = x0 + (id*lenx)/np + i*dx;

for(i=0;i<=my;i++) y[i] = y0 + i*dy;

/* end grid points */

printf("x[0]=%f x[mx]=%f\ny[0]=%f

y[my]=%f\n\n",x[0],x[mx],y[0],y[my]);

/* initial conditions */

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

u[i][j] = uxyt(x[i],y[j],t0);

}

}

/* end initial conditions */

/* boundary initialization */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0);

u[i][my] = uxyt(x[i],y[my],t0);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

if(id==0) u[0][i] = uxyt(x[0],y[i],t0);

if(id==(np-1)) u[mx][i] =

uxyt(x[mx],y[i],t0);

}

/* end left and right boundary */

/* end boundary initialization */

/* initializing coefficient matrix a */
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for(i=1;i<=n;i++){

a[3][i] = 1.0 + 4.0*alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]) -

dt*gam(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]);

}

for(i=1;i<=n;i++){

dum=i%(mx-1);

if(dum!=1){

a[2][i] =

beta_coef*beta(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[2][i] = 0.0;

if(dum!=0){

a[4][i] =

-beta_coef*beta(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[4][i] = 0.0;

}

for(i=1;i<=n;i++){

a[1][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

a[5][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

}

for(i=0;i<=mx-2;i++){

a[1][i+1] = 0.0;

a[5][n-i] = 0.0;
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}

/* end intializing coefficient matrix a */

start = time(NULL);

for(ii=1;ii<=mt;ii++){

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

v[dum] = u[i][j] +

dt*fct(x[i],y[j],t0+ii*dt);

dum++;

}

}

/* begin predictor */

/* predictor send/recv 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] = u[mx-p][i];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,

id+1,9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,

id-1,9,MPI_COMM_WORLD,&status);

/* end predictor send/recv 1 */

/* putting values in vectors */

for(i=0;i<=my;i++){

mid[i] = u[0][i];

right[i] = u[p][i];

}

/* end putting values in vectors */

/* explicit portion of predictor */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alphaH -

beta(x[0],y[i])*betaH)*left[i]

+(1.0 - 2.0*alpha(x[0],y[i])*
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alphaH)*mid[i] +

(alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit portion of predictor */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] =

(-alpha(x[0],y[i])*alpha_coef);

b[2][i] =

1.0 + 2.0*alpha(x[0],y[i])*alpha_coef-

dt*gam(x[0],y[i]);

b[3][i] =

(-alpha(x[0],y[i])*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (ax = v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef*alpha(x[0],y[my-1]))

*uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (ax = v1) */

/* gauss-seidel for v1_new */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]
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+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]

-old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for v1_new */

/* replacing variables for next time */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

temp[i] = u[0][i];

u[0][i] = predict[i];

}

}

/* end replacing variables for next time */

/* predictor send/recv 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++){

u[mx][i] = recv[i];

}

}

/* end predictor send/recv 2 */

/* end predictor */

/* boundary values */

for(i=1;i<=mx-1;i++){

/* horizontal - bottom */

v[i] = v[i] + alpha_coef

*alpha(x[i],y[1],t0+ii*dt)*

uxyt(x[i],y[0],t0+ii*dt);
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/* horizontal - top */

v[(n-mx+1+i)] = v[(n-mx+1+i)] +

(alpha_coef*

alpha(x[i],y[my-1],t0+ii*dt))*

uxyt(x[i],y[my],t0+ii*dt);

}

/* vertical - left */

for(i=1;i<=my-1;i++){

if(id!=0){

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1]

,y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

u[0][i];

} else {

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

uxyt(x[0],y[i],t0+ii*dt);

}

}

/* vertical - right */

for(i=1;i<=my-1;i++){

if(id!=(np-1)){

v[(i*(mx-1))] = v[(i*(mx-1))] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

u[mx][i];

} else {

v[i*(mx-1)] = v[i*(mx-1)] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*
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uxyt(x[mx],y[i],t0+ii*dt);

}

}

/* end boundary values */

/* gauss-seidel solver */

for(i=1;i<=n;i++) v_new[i]=v[i];

iter = 1;

sent = 0;

while((sent != 1) && (iter <= imax)){

sent = 1;

maxerr = 0.0;

for(i=1;i<=n;i++){

old=v_new[i];

sum = 0.0;

sum = a[1][i]*v_new[i-(mx-1)] +

a[2][i]*v_new[i-1] +

a[4][i]*v_new[i+1] +

a[5][i]*v_new[i+(mx-1)];

v_new[i] = (v[i]-sum)/a[3][i];

if((sent = 1) && (v_new[i] != 0.0)){

ea = fabs((v_new[i]-old)/v_new[i]);

if(ea > maxerr) maxerr = ea;

}

}

iter = iter + 1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel solver */

/* begin corrector */

/* corrector send/recv pair 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] =

v_new[i*(mx-1)];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);



122

/* end corrector send/recv pair 1 */

/* putting values into vectors */

for(i=0;i<=my;i++){

mid[i] = temp[i];

right[i] = v_new[1+(i-1)*(mx-1)];

}

/* end putting values into vectors */

/* explicit correction */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alpha_coef -

beta(x[0],y[i])*beta_coef)

*left[i] +

mid[i] +

(alpha(x[0],y[i])*alpha_coef +

beta(x[0],y[i])*beta_coef)

*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit correction */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] =

(-alpha(x[0],y[i])*alpha_coef);

b[2][i] =

1.0 + 4.0*alpha(x[0],y[i])*alpha_coef

- dt*gam(x[0],y[i]);

b[3][i] =

(-alpha(x[0],y[i])*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (bx=v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +
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(alpha_coef*alpha(x[0],y[my-1]))

*uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (bx=v1) */

/* gauss-seidel for corrector */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]-

old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for corrector */

/* replacing variables prior to resend */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

u[0][i] = predict[i];

}

}

/* end replacing variables prior to resend */

/* corrector send/recv pair 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){
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MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++) u[mx][i] = recv[i];

}

/* end corrector send/recv pair 2 */

/* end corrector */

/* putting v back into u */

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

u[i][j] = v_new[dum];

dum++;

}

}

/* end putting v back into u */

/* updating boundaries */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0+ii*dt);

/* bottom */

u[i][my] = uxyt(x[i],y[my],t0+ii*dt);

/* top */

}

if(id==0){

for(i=0;i<=my;i++)

u[0][i] = uxyt(x[0],y[i],t0+ii*dt);

}

if(id==(np-1)){

for(i=0;i<=my;i++)

u[mx][i] = uxyt(x[mx],y[i],t0+ii*dt);

}

/* end updating boundaries */

} /* end solver */

end = time(NULL);

time1 = end - start;

/* error computation */

maxerr = 0.0;

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

diff = fabs(uxyt(x[i],y[j],t0+(ii-1)*dt)

-u[i][j]);
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if(diff > maxerr) maxerr = diff;

}

}

printf("time=%.1f maxerr= %.3e\n",time1,maxerr);

/* end error computation */

/* output loop */

/* for(j=0;j<=mx;j++){

for(i=0;i<=my;i++){

printf("%.5f\t%.5f\t%.10f\t%.10f\t%.16e\n",

x[j],y[i],

uxyt(x[j],y[i],(ii-1)*dt),u[j][i],

(uxyt(x[j],y[i],(ii-1)*dt)-u[j][i]));

}

}

/* end output loop */

printf("\n\n");

} /* end increment loop */

/* closing MPI */

MPI_Finalize();

return 0;

/* end closing MPI */

}

/* end main */

/* function definitions */

double uxyt(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return

exp(-2.0*t)*sin(M_PI*x)*sin(M_PI*y);

break;

case 2: return exp(-2.0*t)*cos(3.0*x+y);

break;

case 3: return
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exp(t)*sin(2.0*x*M_PI)*sin(y*M_PI);

break;

case 4: return exp(-2.0*t)*sin(x)*sin(y);

break;

default: printf("fix the example number\n");

}

}

double alpha(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 1.0/(M_PI * M_PI);

/* example 1 */

break;

case 2: return 1.0; /* example 2 */

break;

case 3: return 1.0; /* example 3 */

break;

case 4: return 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double beta(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;
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case 4: return 9.9*sin(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double gam(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 8.0; /* example 2 */

break;

case 3: return (1.0+5.0*M_PI*M_PI);

/* example 3 */

break;

case 4: return -9.9*cos(x);

/* example 4 */

break;

default: printf("fix the example number\n");

}

}

double fct(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 0.0; /* example 4 */
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break;

default: printf("fix the example number\n");

}

}

B.3 ceidd exp1.c

/* This program will solve the 2-d convection-diffusion equation

using Backward Euler to solve and Gauss-Seidel as the interative

matrix solver and exp1 on the interface

*/

#include "mpi.h"

#include "stdio.h"

#include "math.h"

#include "time.h"

double uxyt(); double alpha(); double beta();

double gam(); double fct();

/* begin main */

main(int argc, char *argv[])

{

/* variables */

double a[6][72200], u[405][405];

double x[405], y[405];

double v[72200], v_new[72200];

double

h[7]={0.1,0.05,0.025,0.01,0.005,0.0025,0.001};

/* parallel variables */

double b[4][405], left[405], mid[405], right[405];

double send[405], recv[405], v1[405], v1_new[405];

double predict[405], temp[405];

double alphaH, betaH;

int np, id;

/* end parallel variables */

int i, j, n, mx, my, mt, p;

int dum, ii, loop;

int iter, sent, imax=20000;
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double dx, dt, dy, lenx, leny, lent, H;

double alpha_coef, beta_coef;

double diff, maxerr, time1;

double dummy, old, sum, ea, es =

0.0000000000000001;

double x0, xf, y0, yf, t0, tf;

time_t start, end;

int ex = 3;

/* domain declarations */

switch(ex)

{

case 1: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 1 */

break;

case 2: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 2 */

break;

case 3: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 3 */

break;

case 4: x0 = 0.0; xf = 2.0*M_PI;

y0 = 0.0; yf = 1.0*M_PI;

t0 = 0.0; tf = 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

/* end domain declarations */

/* end variables */

lenx = xf - x0; leny = yf - y0; lent = tf - t0;

/* MPI startup */

MPI_Status status;

MPI_Init(&argc, &argv);
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MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

/* end MPI startup */

for(loop=0;loop<=5;loop++)

{

/* grid assignment */

dx = /*M_PI**/h[loop]; dy = dx;

mx = ceil(lenx/(np*dx)); my = ceil(leny/dy);

n = (mx-1)*(my-1);

dt = /*0.01*/pow(h[loop],2.0); mt = ceil(lent/dt);

p = ceil(pow(2.0*dt,0.5)/dx); H=p*dx;

/* end grid assignment */

/* coefficients */

alpha_coef = dt/pow(dx,2);

beta_coef = dt/(2.0*dx);

alphaH = dt/pow(H,2);

betaH = dt/(2.0*H);

/* end coefficients */

/* grid points */

for(i=0;i<=mx;i++) x[i] = x0 + (id*lenx)/np + i*dx;

for(i=0;i<=my;i++) y[i] = y0 + i*dy;

/* end grid points */

printf("x[0]=%f x[mx]=%f\ny[0]=%f

y[my]=%f\n\n",x[0],x[mx],y[0],y[my]);

/* initial conditions */

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

u[i][j] = uxyt(x[i],y[j],t0);

}

}

/* end initial conditions */

/* boundary initialization */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0);
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u[i][my] = uxyt(x[i],y[my],t0);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

if(id==0) u[0][i] = uxyt(x[0],y[i],t0);

if(id==(np-1)) u[mx][i] =

uxyt(x[mx],y[i],t0);

}

/* end left and right boundary */

/* end boundary initialization */

/* initializing coefficient matrix a */

for(i=1;i<=n;i++){

a[3][i] = 1.0 + 4.0*alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]) -

dt*gam(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]);

}

for(i=1;i<=n;i++){

dum=i%(mx-1);

if(dum!=1){

a[2][i] = beta_coef

*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1) +

1])-

alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]);

} else a[2][i] = 0.0;

if(dum!=0){

a[4][i] = -beta_coef

*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])-

alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]);

} else a[4][i] = 0.0;

}

for(i=1;i<=n;i++){

a[1][i] = -alpha_coef*
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alpha(x[(i-1)%(mx-1)+1]

,y[(i-1)/(mx-1) + 1]);

a[5][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1]

,y[(i-1)/(mx-1) + 1]);

}

for(i=0;i<=mx-2;i++){

a[1][i+1] = 0.0;

a[5][n-i] = 0.0;

}

/* end intializing coefficient matrix a */

start = time(NULL);

for(ii=1;ii<=mt;ii++){

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

v[dum] = u[i][j]

+ dt*fct(x[i],y[j],t0+ii*dt);

dum++;

}

}

/* begin predictor */

/* predictor send/recv 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] = u[mx-p][i];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,9

,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end predictor send/recv 1 */

/* putting values in vectors */

for(i=0;i<=my;i++){

mid[i] = u[0][i];

right[i] = u[p][i];
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}

/* end putting values in vectors */

/* explicit portion of predictor */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alphaH -

beta(x[0],y[i])*betaH)*left[i]

+ (1.0 - 2.0

*alpha(x[0],y[i])*

alphaH)*mid[i] +

(alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit portion of predictor */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] = (-alpha(x[0],y[i])*

alpha_coef);

b[2][i] = 1.0 + 2.0*alpha(x[0],y[i])*

alpha_coef-

dt*gam(x[0],y[i]);

b[3][i] = (-alpha(x[0],y[i])

*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (ax = v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef*alpha(x[0],y[my-1]))

*uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (ax = v1) */

/* gauss-seidel for v1_new */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];
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iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]

-old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for v1_new */

/* computing explicit predictor

on coarse grid */

if(id!=0){

for(i=p;i<=my-p;i++){

v1_new[i] = (alpha(x[0],y[i])*alphaH)

*(left[i] + right[i] +

mid[i-p] + mid[i+p] - 4.0*mid[i])

+ (betaH*

beta(x[0],y[i]))*(right[i] -

left[i]) +

dt*gam(x[0],y[i])*mid[i] +

dt*fct(x[0],y[i],t0+(ii-1)*dt)

+ mid[i];

}

}

/* end computing explicit predictor on

coarse grid */

/* replacing variables for next time */

if(id!=0){
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for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

temp[i] = u[0][i];

u[0][i] = predict[i];

}

}

/* end replacing variables for next time */

/* predictor send/recv 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++){

u[mx][i] = recv[i];

}

}

/* end predictor send/recv 2 */

/* end predictor */

/* boundary values */

for(i=1;i<=mx-1;i++){

/* horizontal - bottom */

v[i] = v[i] + alpha_coef

*alpha(x[i],y[1],t0+ii*dt)*

uxyt(x[i],y[0],t0+ii*dt);

/* horizontal - top */

v[(n-mx+1+i)] = v[(n-mx+1+i)] +

(alpha_coef*

alpha(x[i],y[my-1],t0+ii*dt))*

uxyt(x[i],y[my],t0+ii*dt);

}

/* vertical - left */

for(i=1;i<=my-1;i++){

if(id!=0){

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],
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y[i],t0+ii*dt))*

u[0][i];

} else {

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

uxyt(x[0],y[i],t0+ii*dt);

}

}

/* vertical - right */

for(i=1;i<=my-1;i++){

if(id!=(np-1)){

v[(i*(mx-1))] = v[(i*(mx-1))] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

u[mx][i];

} else {

v[i*(mx-1)] = v[i*(mx-1)] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

uxyt(x[mx],y[i],t0+ii*dt);

}

}

/* end boundary values */

/* gauss-seidel solver */

for(i=1;i<=n;i++) v_new[i]=v[i];

iter = 1;

sent = 0;

while((sent != 1) && (iter <= imax)){

sent = 1;

maxerr = 0.0;

for(i=1;i<=n;i++){

old=v_new[i];
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sum = 0.0;

sum = a[1][i]*v_new[i-(mx-1)] +

a[2][i]*v_new[i-1] +

a[4][i]*v_new[i+1] +

a[5][i]*v_new[i+(mx-1)];

v_new[i] = (v[i]-sum)/a[3][i];

if((sent = 1) && (v_new[i] != 0.0)){

ea = fabs((v_new[i]-old)/v_new[i]);

if(ea > maxerr) maxerr = ea;

}

}

iter = iter + 1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel solver */

/* begin corrector */

/* corrector send/recv pair 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] =

v_new[i*(mx-1)];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end corrector send/recv pair 1 */

/* putting values into vectors */

for(i=0;i<=my;i++){

mid[i] = temp[i];

right[i] = v_new[1+(i-1)*(mx-1)];

}

/* end putting values into vectors */

/* explicit correction */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alpha_coef -

beta(x[0],y[i])*beta_coef)*

left[i] + mid[i] +
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(alpha(x[0],y[i])*alpha_coef +

beta(x[0],y[i])*beta_coef)

*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit correction */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] = (-alpha(x[0],y[i])*

alpha_coef);

b[2][i] = 1.0 + 4.0*alpha(x[0],y[i])*

alpha_coef

- dt*gam(x[0],y[i]);

b[3][i] = (-alpha(x[0],y[i])*

alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (bx=v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef

*alpha(x[0],y[my-1]))*

uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (bx=v1) */

/* gauss-seidel for corrector */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;
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sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]

-old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for corrector */

/* replacing variables prior to resend */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

u[0][i] = predict[i];

}

}

/* end replacing variables prior to resend */

/* corrector send/recv pair 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++) u[mx][i] = recv[i];

}

/* end corrector send/recv pair 2 */

/* end corrector */

/* putting v back into u */

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

u[i][j] = v_new[dum];

dum++;

}

}
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/* end putting v back into u */

/* updating boundaries */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0+ii*dt);

/* bottom */

u[i][my] = uxyt(x[i],y[my],t0+ii*dt);

/* top */

}

if(id==0){

for(i=0;i<=my;i++)

u[0][i] = uxyt(x[0],y[i],t0+ii*dt);

}

if(id==(np-1)){

for(i=0;i<=my;i++)

u[mx][i] = uxyt(x[mx],y[i],t0+ii*dt);

}

/* end updating boundaries */

} /* end solver */

end = time(NULL);

time1 = end - start;

/* error computation */

maxerr = 0.0;

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

diff = fabs(uxyt(x[i],y[j],t0+(ii-1)*dt)-

u[i][j]);

if(diff > maxerr) maxerr = diff;

}

}

printf("time=%.1f maxerr= %.3e\n",time1,maxerr);

/* end error computation */

/* output loop */

/* for(j=0;j<=mx;j++){

for(i=0;i<=my;i++){

printf("%.5f\t%.5f\t%.10f\t%.10f\t%.16e\n",

x[j],y[i],

uxyt(x[j],y[i],(ii-1)*dt),u[j][i],

(uxyt(x[j],y[i],(ii-1)*dt)-u[j][i]));

}
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}

/* end output loop */

printf("\n\n");

} /* end increment loop */

/* closing MPI */

MPI_Finalize();

return 0;

/* end closing MPI */

}

/* end main */

/* function definitions */

double uxyt(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return

exp(-2.0*t)*sin(M_PI*x)*sin(M_PI*y);

break;

case 2: return exp(-2.0*t)*cos(3.0*x+y);

break;

case 3: return

exp(t)*sin(2.0*x*M_PI)*sin(y*M_PI);

break;

case 4: return exp(-2.0*t)*sin(x)*sin(y);

break;

default: printf("fix the example number\n");

}

}

double alpha(double x, double y)

{

int ex = 3;

switch(ex)
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{

case 1: return 1.0/(M_PI * M_PI);

/* example 1 */

break;

case 2: return 1.0; /* example 2 */

break;

case 3: return 1.0; /* example 3 */

break;

case 4: return 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double beta(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 9.9*sin(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double gam(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */
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break;

case 2: return 8.0; /* example 2 */

break;

case 3: return (1.0+5.0*M_PI*M_PI);

/* example 3 */

break;

case 4: return -9.9*cos(x);

/* example 4 */

break;

default: printf("fix the example number\n");

}

}

double fct(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 0.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

B.4 ceidd exp2.c

/* This program will solve the 2-d convection-diffusion equation

using Backward Euler to solve and Gauss-Seidel as the interative

matrix solver and exp2 on the interface

*/

#include "mpi.h"

#include "stdio.h"
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#include "math.h"

#include "time.h"

double uxyt(); double alpha(); double beta();

double gam(); double fct();

/* begin main */

main(int argc, char *argv[])

{

/* variables */

double a[6][72200], u[405][405];

double x[405], y[405];

double v[72200], v_new[72200];

double

h[7]={0.1,0.05,0.025,0.01,0.005,0.0025,0.001};

/* parallel variables */

double b[4][405], left[405], mid[405], right[405];

double send[405], recv[405], v1[405], v1_new[405];

double predict[405], temp[405];

double alphaH, betaH;

int np, id;

/* end parallel variables */

int i, j, n, mx, my, mt, p;

int dum, ii, loop;

int iter, sent, imax=20000;

double dx, dt, dy, lenx, leny, lent, H;

double alpha_coef, beta_coef;

double diff, maxerr, time1;

double dummy, old, sum, ea, es =

0.0000000000000001;

double x0, xf, y0, yf, t0, tf;

time_t start, end;

int ex = 3;

/* domain declarations */

switch(ex)
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{

case 1: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 1 */

break;

case 2: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 2 */

break;

case 3: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 3 */

break;

case 4: x0 = 0.0; xf = 2.0*M_PI;

y0 = 0.0; yf = 1.0*M_PI;

t0 = 0.0; tf = 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

/* end domain declarations */

/* end variables */

lenx = xf - x0; leny = yf - y0; lent = tf - t0;

/* MPI startup */

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

/* end MPI startup */

for(loop=0;loop<=5;loop++)

{

/* grid assignment */

dx = /*M_PI**/h[loop]; dy = dx;

mx = ceil(lenx/(np*dx)); my = ceil(leny/dy);

n = (mx-1)*(my-1);

dt = /*0.001*/pow(h[loop],2.0); mt = ceil(lent/dt);

p = ceil(pow(2.0*dt,0.5)/dx); H=p*dx;

/* end grid assignment */
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/* coefficients */

alpha_coef = dt/pow(dx,2);

beta_coef = dt/(2.0*dx);

alphaH = dt/pow(H,2);

betaH = dt/(2.0*H);

/* end coefficients */

/* grid points */

for(i=0;i<=mx;i++) x[i] = x0 + (id*lenx)/np + i*dx;

for(i=0;i<=my;i++) y[i] = y0 + i*dy;

/* end grid points */

printf("x[0]=%f x[mx]=%f\ny[0]=%f

y[my]=%f\n\n",x[0],x[mx],y[0],y[my]);

/* initial conditions */

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

u[i][j] = uxyt(x[i],y[j],t0);

}

}

/* end initial conditions */

/* boundary initialization */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0);

u[i][my] = uxyt(x[i],y[my],t0);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

if(id==0) u[0][i] = uxyt(x[0],y[i],t0);

if(id==(np-1)) u[mx][i] =

uxyt(x[mx],y[i],t0);

}

/* end left and right boundary */

/* end boundary initialization */

/* initializing coefficient matrix a */

for(i=1;i<=n;i++){
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a[3][i] = 1.0 + 4.0*alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1) +

1]) -

dt*gam(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1) +

1]);

}

for(i=1;i<=n;i++){

dum=i%(mx-1);

if(dum!=1){

a[2][i] = beta_coef

*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1) +

1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[2][i] = 0.0;

if(dum!=0){

a[4][i] = -beta_coef

*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1) +

1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[4][i] = 0.0;

}

for(i=1;i<=n;i++){

a[1][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]);

a[5][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]);

}

for(i=0;i<=mx-2;i++){

a[1][i+1] = 0.0;

a[5][n-i] = 0.0;

}

/* end intializing coefficient matrix a */

start = time(NULL);
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for(ii=1;ii<=mt;ii++){

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

v[dum] = u[i][j] +

dt*fct(x[i],y[j],t0+ii*dt);

dum++;

}

}

/* begin predictor */

/* predictor send/recv 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] = u[mx-p][i];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end predictor send/recv 1 */

/* putting values in vectors */

for(i=0;i<=my;i++){

mid[i] = u[0][i];

right[i] = u[p][i];

}

/* end putting values in vectors */

/* explicit portion of predictor */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alphaH -

beta(x[0],y[i])*betaH)*left[i]

+ (1.0 - 2.0

*alpha(x[0],y[i])*

alphaH)*mid[i] +

(alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);
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}

}

/* end explicit portion of predictor */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] = (-alpha(x[0],y[i])*

alpha_coef);

b[2][i] = 1.0 + 2.0*alpha(x[0],y[i])*

alpha_coef-

dt*gam(x[0],y[i]);

b[3][i] = (-alpha(x[0],y[i])*

alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (ax = v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef*alpha(x[0],y[my-1]))

*uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (ax = v1) */

/* gauss-seidel for v1_new */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]-
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old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for v1_new */

/* computing explicit predictor on

coarse grid */

if(id!=0){

for(i=p;i<=my-p;i++){

v1_new[i] = (alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*

right[i+p] +

(alpha(x[0],y[i])*alphaH)*

left[i+p] +

(1.0-4.0*alpha(x[0],y[i])*

alphaH +

dt*gam(x[0],y[i]))*mid[i] +

(alpha(x[0],y[i])*alphaH)*

right[i-p] +

(alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*

left[i-p] +

dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end computing explicit predictor

on coarse grid */

/* replacing variables for next time */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

temp[i] = u[0][i];

u[0][i] = predict[i];

}

}

/* end replacing variables for next time */

/* predictor send/recv 2 */
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if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++){

u[mx][i] = recv[i];

}

}

/* end predictor send/recv 2 */

/* end predictor */

/* boundary values */

for(i=1;i<=mx-1;i++){

/* horizontal - bottom */

v[i] = v[i] + alpha_coef

*alpha(x[i],y[1],t0+ii*dt)*

uxyt(x[i],y[0],t0+ii*dt);

/* horizontal - top */

v[(n-mx+1+i)] = v[(n-mx+1+i)] +

(alpha_coef*

alpha(x[i],y[my-1],t0+ii*dt))*

uxyt(x[i],y[my],t0+ii*dt);

}

/* vertical - left */

for(i=1;i<=my-1;i++){

if(id!=0){

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

u[0][i];

} else {

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*
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uxyt(x[0],y[i],t0+ii*dt);

}

}

/* vertical - right */

for(i=1;i<=my-1;i++){

if(id!=(np-1)){

v[(i*(mx-1))] = v[(i*(mx-1))] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

u[mx][i];

} else {

v[i*(mx-1)] = v[i*(mx-1)] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

uxyt(x[mx],y[i],t0+ii*dt);

}

}

/* end boundary values */

/* gauss-seidel solver */

for(i=1;i<=n;i++) v_new[i]=v[i];

iter = 1;

sent = 0;

while((sent != 1) && (iter <= imax)){

sent = 1;

maxerr = 0.0;

for(i=1;i<=n;i++){

old=v_new[i];

sum = 0.0;

sum = a[1][i]*v_new[i-(mx-1)] +

a[2][i]*v_new[i-1] +

a[4][i]*v_new[i+1] +

a[5][i]*v_new[i+(mx-1)];

v_new[i] = (v[i]-sum)/a[3][i];

if((sent = 1) && (v_new[i] != 0.0)){

ea = fabs((v_new[i]-old)/v_new[i]);

if(ea > maxerr) maxerr = ea;
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}

}

iter = iter + 1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel solver */

/* begin corrector */

/* corrector send/recv pair 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] =

v_new[i*(mx-1)];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end corrector send/recv pair 1 */

/* putting values into vectors */

for(i=0;i<=my;i++){

mid[i] = temp[i];

right[i] = v_new[1+(i-1)*(mx-1)];

}

/* end putting values into vectors */

/* explicit correction */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] = (alpha(x[0],y[i])*

alpha_coef -

beta(x[0],y[i])*

beta_coef)*left[i] +

mid[i] +

(alpha(x[0],y[i])*alpha_coef +

beta(x[0],y[i])*beta_coef)*

right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit correction */

/* setting up b matrix */
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for(i=1;i<=my-1;i++){

b[1][i] =

(-alpha(x[0],y[i])*alpha_coef);

b[2][i] = 1.0 +

4.0*alpha(x[0],y[i])*alpha_coef

- dt*gam(x[0],y[i]);

b[3][i] =

(-alpha(x[0],y[i])*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (bx=v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef*alpha(x[0],y[my-1]))

*uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (bx=v1) */

/* gauss-seidel for corrector */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]-

old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}
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iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for corrector */

/* replacing variables prior to resend */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

u[0][i] = predict[i];

}

}

/* end replacing variables prior to resend */

/* corrector send/recv pair 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++) u[mx][i] = recv[i];

}

/* end corrector send/recv pair 2 */

/* end corrector */

/* putting v back into u */

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

u[i][j] = v_new[dum];

dum++;

}

}

/* end putting v back into u */

/* updating boundaries */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0+ii*dt);

/* bottom */

u[i][my] = uxyt(x[i],y[my],t0+ii*dt);

/* top */

}

if(id==0){
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for(i=0;i<=my;i++)

u[0][i] = uxyt(x[0],y[i],t0+ii*dt);

}

if(id==(np-1)){

for(i=0;i<=my;i++)

u[mx][i] = uxyt(x[mx],y[i],t0+ii*dt);

}

/* end updating boundaries */

} /* end solver */

end = time(NULL);

time1 = end - start;

/* error computation */

maxerr = 0.0;

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

diff = fabs(uxyt(x[i],y[j],t0+(ii-1)*dt)

-u[i][j]);

if(diff > maxerr) maxerr = diff;

}

}

printf("time=%.1f maxerr= %.3e\n",time1,maxerr);

/* end error computation */

/* output loop */

/* for(j=0;j<=mx;j++){

for(i=0;i<=my;i++){

printf("%.5f\t%.5f\t%.10f\t%.10f\t%.16e\n",

x[j],y[i],

uxyt(x[j],y[i],(ii-1)*dt),u[j][i],

(uxyt(x[j],y[i],(ii-1)*dt)-u[j][i]));

}

}

/* end output loop */

printf("\n\n");

} /* end increment loop */

/* closing MPI */

MPI_Finalize();

return 0;

/* end closing MPI */
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}

/* end main */

/* function definitions */

double uxyt(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return

exp(-2.0*t)*sin(M_PI*x)*sin(M_PI*y);

break;

case 2: return exp(-2.0*t)*cos(3.0*x+y);

break;

case 3: return

exp(t)*sin(2.0*x*M_PI)*sin(y*M_PI);

break;

case 4: return exp(-2.0*t)*sin(x)*sin(y);

break;

default: printf("fix the example number\n");

}

}

double alpha(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 1.0/(M_PI * M_PI);

/* example 1 */

break;

case 2: return 1.0; /* example 2 */

break;

case 3: return 1.0; /* example 3 */

break;

case 4: return 1.0; /* example 4 */
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break;

default: printf("fix the example number\n");

}

}

double beta(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 9.9*sin(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double gam(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 8.0; /* example 2 */

break;

case 3: return (1.0+5.0*M_PI*M_PI);

/* example 3 */

break;

case 4: return -9.9*cos(x); /* example 4 */

break;

default: printf("fix the example number\n");



159

}

}

double fct(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 0.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

B.5 ceidd lex.c

/* This program will solve the 2-d convection-diffusion equation

using Backward Euler to solve and Gauss-Seidel as the interative

matrix solver and use lex on the interface

*/

#include "mpi.h"

#include "stdio.h"

#include "math.h"

#include "time.h"

double uxyt(); double alpha(); double beta();

double gam(); double fct();

/* begin main */

main(int argc, char *argv[])

{

/* variables */
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double a[6][72200], u[405][405];

double x[405], y[405];

double v[72200], v_new[72200];

double

h[7]={0.1,0.05,0.025,0.01,0.005,0.0025,0.001};

/* parallel variables */

double b[4][405], left[405], mid[405], right[405];

double send[405], recv[405], v1[405], v1_new[405];

double predict[405], temp[405], old1[405],

old2[405];

double alphaH, betaH;

int np, id;

/* end parallel variables */

int i, j, n, mx, my, mt, p;

int dum, ii, loop;

int iter, sent, imax=20000;

double dx, dt, dy, lenx, leny, lent, H;

double alpha_coef, beta_coef;

double diff, maxerr, time1;

double dummy, old, sum, ea, es =

0.0000000000000001;

double x0, xf, y0, yf, t0, tf;

time_t start, end;

int ex = 3;

/* domain declarations */

switch(ex)

{

case 1: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 1 */

break;

case 2: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 2 */

break;
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case 3: x0 = 0.0; xf = 1.0;

y0 = 0.0; yf = 1.0;

t0 = 0.0; tf = 1.0; /* example 3 */

break;

case 4: x0 = 0.0; xf = 2.0*M_PI;

y0 = 0.0; yf = 1.0*M_PI;

t0 = 0.0; tf = 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

/* end domain declarations */

/* end variables */

lenx = xf - x0; leny = yf - y0; lent = tf - t0;

/* MPI startup */

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

/* end MPI startup */

for(loop=0;loop<=5;loop++)

{

/* grid assignment */

dx = /*M_PI**/h[loop]; dy = dx;

mx = ceil(lenx/(np*dx)); my = ceil(leny/dy);

n = (mx-1)*(my-1);

dt = 0.01/*pow(h[loop],2.0)*/; mt = ceil(lent/dt);

p = ceil(pow(2.0*dt,0.5)/dx); H=p*dx;

/* end grid assignment */

/* coefficients */

alpha_coef = dt/pow(dx,2);

beta_coef = dt/(2.0*dx);

alphaH = dt/pow(H,2);

betaH = dt/(2.0*H);

/* end coefficients */

/* grid points */

for(i=0;i<=mx;i++) x[i] = x0 + (id*lenx)/np + i*dx;

for(i=0;i<=my;i++) y[i] = y0 + i*dy;
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/* end grid points */

printf("x[0]=%f x[mx]=%f\ny[0]=%f

y[my]=%f\n\n",x[0],x[mx],y[0],y[my]);

/* initial conditions */

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

u[i][j] = uxyt(x[i],y[j],t0);

}

}

/* end initial conditions */

/* boundary initialization */

/* lower and upper boundary */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0);

u[i][my] = uxyt(x[i],y[my],t0);

}

/* end lower and upper boundary */

/* left and right boundary */

for(i=0;i<=my;i++){

if(id==0) u[0][i] = uxyt(x[0],y[i],t0);

if(id==(np-1)) u[mx][i] =

uxyt(x[mx],y[i],t0);

}

/* end left and right boundary */

/* end boundary initialization */

/* initializing coefficient matrix a */

for(i=1;i<=n;i++){

a[3][i] = 1.0 + 4.0*alpha_coef*

alpha(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]) -

dt*gam(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1]);

}

for(i=1;i<=n;i++){

dum=i%(mx-1);

if(dum!=1){

a[2][i] = beta_coef
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*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[2][i] = 0.0;

if(dum!=0){

a[4][i] = -beta_coef

*beta(x[(i-1)%(mx-1)+1],y[(i-1)/(mx-1)

+ 1])-

alpha_coef*alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1)

+ 1]);

} else a[4][i] = 0.0;

}

for(i=1;i<=n;i++){

a[1][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]);

a[5][i] = -alpha_coef*

alpha(x[(i-1)%(mx-1)+1],

y[(i-1)/(mx-1) + 1]);

}

for(i=0;i<=mx-2;i++){

a[1][i+1] = 0.0;

a[5][n-i] = 0.0;

}

/* end intializing coefficient matrix a */

start = time(NULL);

for(ii=1;ii<=mt;ii++){

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

v[dum] = u[i][j] +

dt*fct(x[i],y[j],t0+ii*dt);

dum++;

}
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}

/* begin predictor */

/* predictor send/recv 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] = u[mx-p][i];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end predictor send/recv 1 */

/* putting values in vectors */

for(i=0;i<=my;i++){

mid[i] = u[0][i];

right[i] = u[p][i];

}

/* end putting values in vectors */

/* explicit portion of predictor */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alphaH -

beta(x[0],y[i])*betaH)*left[i]

+ (1.0 - 2.0

*alpha(x[0],y[i])*alphaH)

*mid[i] +

(alpha(x[0],y[i])*alphaH +

beta(x[0],y[i])*betaH)*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit portion of predictor */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] =

(-alpha(x[0],y[i])*alpha_coef);

b[2][i] = 1.0 + 2.0*alpha(x[0],y[i])

*alpha_coef-

dt*gam(x[0],y[i]);
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b[3][i] =

(-alpha(x[0],y[i])*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (ax = v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef

*alpha(x[0],y[my-1]))*uxyt(x[0],

y[my],t0+ii*dt);

/* end setting up v1 vector (ax = v1) */

/* gauss-seidel for v1_new */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]

-old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for v1_new */

/* replacing variables for next time */
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if(id!=0){

/* begin computation of

linear extrapolation */

if(ii==1){

for(i=1;i<=my-1;i++) old2[i]=u[0][i];

} else {

for(i=p;i<=my-p;i++)

v1_new[i]=2.0*old1[i]-old2[i];

}

/* end computation of

linear extrapolation */

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

temp[i] = u[0][i];

u[0][i] = predict[i];

}

}

/* end replacing variables for next time */

/* predictor send/recv 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++){

u[mx][i] = recv[i];

}

}

/* end predictor send/recv 2 */

/* end predictor */

/* boundary values */

for(i=1;i<=mx-1;i++){

/* horizontal - bottom */

v[i] = v[i] + alpha_coef

*alpha(x[i],y[1],t0+ii*dt)*

uxyt(x[i],y[0],t0+ii*dt);

/* horizontal - top */

v[(n-mx+1+i)] = v[(n-mx+1+i)] +

(alpha_coef*
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alpha(x[i],y[my-1],t0+ii*dt))*

uxyt(x[i],y[my],t0+ii*dt);

}

/* vertical - left */

for(i=1;i<=my-1;i++){

if(id!=0){

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

u[0][i];

} else {

v[1+((i-1)*(mx-1))] =

v[1+((i-1)*(mx-1))] +

(alpha_coef*alpha(x[1],

y[i],t0+ii*dt) -

beta_coef*beta(x[1],

y[i],t0+ii*dt))*

uxyt(x[0],y[i],t0+ii*dt);

}

}

/* vertical - right */

for(i=1;i<=my-1;i++){

if(id!=(np-1)){

v[(i*(mx-1))] = v[(i*(mx-1))] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

u[mx][i];

} else {

v[i*(mx-1)] = v[i*(mx-1)] +

(alpha_coef*

alpha(x[mx-1],y[i],t0+ii*dt) +

beta_coef*beta(x[mx-1],

y[i],t0+ii*dt))*

uxyt(x[mx],y[i],t0+ii*dt);

}

}
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/* end boundary values */

/* gauss-seidel solver */

for(i=1;i<=n;i++) v_new[i]=v[i];

iter = 1;

sent = 0;

while((sent != 1) && (iter <= imax)){

sent = 1;

maxerr = 0.0;

for(i=1;i<=n;i++){

old=v_new[i];

sum = 0.0;

sum = a[1][i]*v_new[i-(mx-1)] +

a[2][i]*v_new[i-1] +

a[4][i]*v_new[i+1] +

a[5][i]*v_new[i+(mx-1)];

v_new[i] = (v[i]-sum)/a[3][i];

if((sent = 1) && (v_new[i] != 0.0)){

ea = fabs((v_new[i]-old)/v_new[i]);

if(ea > maxerr) maxerr = ea;

}

}

iter = iter + 1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel solver */

/* begin corrector */

/* corrector send/recv pair 1 */

if(id!=(np-1)){

for(i=0;i<=my;i++) send[i] =

v_new[i*(mx-1)];

}

if(id!=(np-1))

MPI_Send(&send,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD);

if(id!=0)

MPI_Recv(&left,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD,&status);

/* end corrector send/recv pair 1 */

/* putting values into vectors */

for(i=0;i<=my;i++){
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mid[i] = temp[i];

right[i] = v_new[1+(i-1)*(mx-1)];

}

/* end putting values into vectors */

/* explicit correction */

if(p!=1){

for(i=1;i<=my-1;i++){

predict[i] =

(alpha(x[0],y[i])*alpha_coef -

beta(x[0],y[i])*beta_coef)*

left[i] + mid[i] +

(alpha(x[0],y[i])*alpha_coef +

beta(x[0],y[i])*beta_coef

)*right[i]

+dt*fct(x[0],y[i],t0+ii*dt);

}

}

/* end explicit correction */

/* setting up b matrix */

for(i=1;i<=my-1;i++){

b[1][i] =

(-alpha(x[0],y[i])*alpha_coef);

b[2][i] = 1.0 + 4.0*alpha(x[0],y[i])*

alpha_coef

- dt*gam(x[0],y[i]);

b[3][i] =

(-alpha(x[0],y[i])*alpha_coef);

}

b[1][1] = 0.0;

b[3][my-1] = 0.0;

/* end setting up b matrix */

/* setting up v1 vector (bx=v1) */

for(i=1;i<=my-1;i++) v1[i] = predict[i];

v1[1] = v1[1] +

(alpha_coef*alpha(x[0],y[1]))

*uxyt(x[0],y[0],t0+ii*dt);

v1[my-1] = v1[my-1] +

(alpha_coef

*alpha(x[0],y[my-1]))*

uxyt(x[0],y[my],t0+ii*dt);

/* end setting up v1 vector (bx=v1) */
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/* gauss-seidel for corrector */

for(i=1;i<=my-1;i++) v1_new[i]=v1[i];

iter=1;

sent=0;

while((sent!=1) && (iter<=imax)){

sent=1;

maxerr=0.0;

for(i=1;i<=my-1;i++){

old=v1_new[i];

sum=0.0;

sum = b[1][i]*v1_new[i-1]

+b[3][i]*v1_new[i+1];

v1_new[i]=(v1[i]-sum)/b[2][i];

if(sent=1 && v1_new[i]!=0.0){

ea = fabs((v1_new[i]

-old)/v1_new[i]);

if(ea > maxerr) maxerr=ea;

}

}

iter=iter+1;

if(maxerr > es) sent = 0;

}

/* end gauss-seidel for corrector */

/* setting up for next loop */

if(ii==1){

for(i=1;i<=my-1;i++) old1[i]=v1_new[i];

} else {

for(i=1;i<=my-1;i++){

old2[i]=old1[i];

old1[i]=v1_new[i];

}

}

/* end setting up for next loop */

/* replacing variables prior to resend */

if(id!=0){

for(i=1;i<=my-1;i++){

predict[i] = v1_new[i];

u[0][i] = predict[i];

}

}
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/* end replacing variables prior to resend */

/* corrector send/recv pair 2 */

if(id!=0)

MPI_Send(&predict,my+1,MPI_DOUBLE,id-1,

9,MPI_COMM_WORLD);

if(id!=(np-1)){

MPI_Recv(&recv,my+1,MPI_DOUBLE,id+1,

9,MPI_COMM_WORLD,&status);

for(i=1;i<=my-1;i++) u[mx][i] = recv[i];

}

/* end corrector send/recv pair 2 */

/* end corrector */

/* putting v back into u */

dum = 1;

for(j=1;j<=my-1;j++){

for(i=1;i<=mx-1;i++){

u[i][j] = v_new[dum];

dum++;

}

}

/* end putting v back into u */

/* updating boundaries */

for(i=0;i<=mx;i++){

u[i][0] = uxyt(x[i],y[0],t0+ii*dt);

/* bottom */

u[i][my] = uxyt(x[i],y[my],t0+ii*dt);

/* top */

}

if(id==0){

for(i=0;i<=my;i++)

u[0][i] = uxyt(x[0],y[i],t0+ii*dt);

}

if(id==(np-1)){

for(i=0;i<=my;i++)

u[mx][i] = uxyt(x[mx],y[i],t0+ii*dt);

}

/* end updating boundaries */

} /* end solver */

end = time(NULL);

time1 = end - start;
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/* error computation */

maxerr = 0.0;

for(j=0;j<=my;j++){

for(i=0;i<=mx;i++){

diff = fabs(uxyt(x[i],y[j],t0+(ii-1)*dt)

-u[i][j]);

if(diff > maxerr) maxerr = diff;

}

}

printf("time=%.1f maxerr= %.16e\n",time1,maxerr);

/* end error computation */

/* output loop */

/* for(j=0;j<=mx;j++){

for(i=0;i<=my;i++){

printf("%.5f\t%.5f\t%.10f\t%.10f\t%.16e\n",

x[j],y[i],

uxyt(x[j],y[i],(ii-1)*dt),u[j][i],

(uxyt(x[j],y[i],(ii-1)*dt)-u[j][i]));

}

}

/* end output loop */

printf("\n\n");

} /* end increment loop */

/* closing MPI */

MPI_Finalize();

return 0;

/* end closing MPI */

}

/* end main */

/* function definitions */

double uxyt(double x, double y, double t)

{

int ex = 3;

switch(ex)
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{

case 1: return

exp(-2.0*t)*sin(M_PI*x)*sin(M_PI*y);

break;

case 2: return exp(-2.0*t)*cos(3.0*x+y);

break;

case 3: return

exp(t)*sin(2.0*x*M_PI)*sin(y*M_PI);

break;

case 4: return exp(-2.0*t)*sin(x)*sin(y);

break;

default: printf("fix the example number\n");

}

}

double alpha(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 1.0/(M_PI * M_PI);

/* example 1 */

break;

case 2: return 1.0; /* example 2 */

break;

case 3: return 1.0; /* example 3 */

break;

case 4: return 1.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double beta(double x, double y)

{

int ex = 3;

switch(ex)
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{

case 1: return 0.0; /* example 1 */

break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 9.9*sin(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double gam(double x, double y)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */

break;

case 2: return 8.0; /* example 2 */

break;

case 3: return (1.0+5.0*M_PI*M_PI);

/* example 3 */

break;

case 4: return -9.9*cos(x); /* example 4 */

break;

default: printf("fix the example number\n");

}

}

double fct(double x, double y, double t)

{

int ex = 3;

switch(ex)

{

case 1: return 0.0; /* example 1 */
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break;

case 2: return 0.0; /* example 2 */

break;

case 3: return 0.0; /* example 3 */

break;

case 4: return 0.0; /* example 4 */

break;

default: printf("fix the example number\n");

}

}
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• Co-Organizer, Math on the Northern Plains Conference, University of Sioux
Falls, Sioux Falls, South Dakota, April 2006

• Coordinator, Mathematical Association of America/North Central Section Fall
Section Meeting, University of Sioux Falls, Sioux Falls, SD, October 2003

• Assessment Committee member, University of Sioux Falls, Sioux Falls, SD,
Fall 2008-present

– Chair, August 2008-present
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• Committee on Liberal Arts Education, University of Sioux Falls, Sioux Falls,
SD, Spring 2004-Spring 2008

– Chair, August 2005- August 2007

• Director of USF Mathematics Tutoring Center, University of Sioux Falls,
Sioux Falls, SD, August 2003-August 2008

• Academic Success Center ad-hoc Committee Member, University of Sioux
Falls, Sioux Falls, SD, Fall 2006-Fall 2008

• USF Faculty Club Advisor, University of Sioux Falls, Sioux Falls, SD, Spring
2004-present

– USF Math/CS Club, 2008-present

– USF Aviation Club, 2006-present

– USF Chess Club, 2004-2006

• Search Committees, 2005 (math), 2007(math and finance)

Research Interests

• Numerical analysis, parallel algorithms

Professional Presentations

• “Implementation of a Capstone Course in the Mathematical Sciences,”
Presented at the MAA/NCS Project NExT Meeting, College of St. Benedict,
Collegeville, MN, April 2008

• “Baby Steps: An Introduction to Mathematical Technology in the
Classroom,” Presented at the MAA/NCS Project NExT Meeting, Bemidji
State University, Bemidji, MN, October 2007

• Panelist, “Transition from Undergraduate to Graduate Study in
Mathematics,” MAA/Wisconsin Section Meeting, April 2003

Professional Activity

• Formal Reviewer, Elementary Statistics: Looking at the Big Picture
Duxbury/Thomson) by Nancy Pfenning, University of Pittsburgh (expected
publication 2009)

• Workshop Participant, Bioinformatics Workshop, University of Sioux Falls,
Sioux Falls, SD, August 2005
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• Participant, Cell Group for Improved Teaching Methods, University of Sioux
Falls, Sioux Falls, SD, Fall 2004-Spring 2006

• Participant, Philosophy of Mathematics, University of Sioux Falls, Sioux Falls,
SD, Interim 2005

• Consultant, Education Area, University of Sioux Falls, Sioux Falls, SD

– Submitted assessment report for recognition of Secondary Mathematics
Education program at USF. Approved November 2008

– Attended SPA Training Activity in preparation for Mathematics
Education program at USF for SD Board of Regents (Summer 2006)

– Created template for assessment of Mathematics Education program at
USF for SD Board of Regents (Spring 2006)

– Coordinator of templates for PRAXIS II mathematics content exam
under SD Teacher Quality Enhancement Grant, 2005

• University Supervisor for Mathematics student teachers, University of Sioux
Falls, Dell Rapids and Roosevelt High Schools, 2006, 2007

• National Fellow, Mathematical Association of America Project NExT (New
Experiences in Teaching A New Faculty Preparation Program), 2003

Undergraduate Research

• As a mentor, I have directed several student research projects, including
projects that led to the following presentations:

– “Energy Flow in an Ecosystem,” Roxie Truax, presented at Mathematics
on the Northern Plains, April 2005

– “Forest Management: Finding the Optimal Sustainable Yield,” Emily
Dean, presented at Mathematics on the Northern Plains, April 2005

– “A Critique of the Leslie Matrix: A Method for Determining Population
Growth,” Jennifer Buckley, presented at Mathematics on the Northern
Plains, April 2005

Courses Taught at USF
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MAT111 Elementary Algebra
MAT112 College Algebra and Trigonometry
MAT113L College Algebra (Recitation)
MAT151 Nature of Mathematics
MAT202 Finite Mathematics
MAT204 Calculus I
MAT205 Calculus II
MAT233 Introduction to Statistics
MAT270 Statistics and Mathematical Functions
MAT283 Mathematician’s Toolbox
MAT294 Art, Math and Culture in Italy and Greece
MAT300 Numerical Methods
MAT304 Linear Algebra
MAT310 Calculus III
MAT311 Differential Equations
MAT320 Introduction to Real Analysis
MAT490 Senior Seminar
BUS382 Management Control Systems

Other Curriculum Development

• Researched and implemented large-scale changes in the Mathematics major to
align with other programs in our peer group, University of Sioux Falls, Sioux
Falls, SD, 2005

• Authored and implemented Mathematica computer laboratories for the
calculus curriculum, 2007

• Implemented the use of LaTeX typesetting in MAT283 Mathematicians
Toolbox that has matriculated into other courses and into MAT490 Senior
Seminar

Computer Skills

• Mathematics Software: Mathematica, Maple

• Statistical Software: SPSS, Excel

• Programming: Basic, Pascal, Fortran, C, C++, HTML

• Graphing Calculators: TI-83/83+, TI-89

• Technical Typesetting: LATEX, Microsoft Equation Editor

Memberships
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• Mathematical Association of America

• Research in Undergraduate Mathematics Special Interest Group of the MAA

• History of Mathematics Special Interest Group of the MAA (charter member)

• Art in Mathematics Special Interest Group of the MAA (charter member)

• Pi Mu Epsilon

Awards and Honors

• Outstanding Faculty of the Year Award, University of Sioux Falls, 2006

• National Mathematical Association of America Project NExT Fellow, 2003

• GAANN Fellow, 1998-2002

Major Professor Date


