1 Section 3.3-1, 2, 3, 4

1. 2. Let $x_{1}:=8$ and $x_{n+1}:=\frac{1}{2} x_{n}+2$ for $n \in N$. Show that $\left(x_{n}\right)$ is bounded and monotone. Find the limit.

Proof. First, let's show that it is monotone (decreasing). Note that $x_{1}=$ $8>x_{2}=6$. For induction, assume that $x_{k}>x_{k+1}$. Next notice

$$
\begin{aligned}
x_{k} & >x_{k+1} \\
\frac{1}{2} x_{k} & >\frac{1}{2} x_{k+1} \\
\frac{1}{2} x_{k}+2 & >\frac{1}{2} x_{k+1}+2 \\
x_{k+1} & >x_{k+2}
\end{aligned}
$$

Since the sequence is decreasing and $x_{n}>0$ for all n, we can be assured that the upper bound is 8 and we have a lower bound of 0 .
To find the limit, we use the same technique as the examples in the book and class.

$$
\begin{aligned}
x_{n+1} & =\frac{1}{2} x_{n}+2 \\
x & =\frac{1}{2} x+2 \quad \text { both limits must be } \mathrm{x} \\
x & =4
\end{aligned}
$$

2. 2. Let $x_{1}>1$ and $x_{n+1}:=2-1 / x_{n}$ for $n \in N$. Show that $\left(x_{n}\right)$ is bounded and monotone. Find the limit.

Proof. Since $x_{1}>1$, we have that $1 / x_{1}<1$. This means that $x_{2}=$ $2-1 / x_{1}>1$. We'd like to show that $x_{n}>1$ for all n. By induction, we see that if $x_{k}>1$, then $x_{k+1}=2-1 / x_{k}>1$ (easy enough?). At this point we are bounded above by 2 and below by 1. (Note: We could have made another arguement that it was bounded below by 0 . The bound of 1 is a little better, but the MCT does not require anything more than bounded.) Now let's show that it is monotone (decreasing). To do this, we want to start by looking at

$$
\begin{aligned}
0 & <\left(x_{1}-1\right)^{2} \\
0 & <x_{1}^{2}-2 x_{1}+1 \\
2 x_{1} & <x_{1}^{2}+1 \\
2 & <x_{1}+1 / x_{1} \\
2-1 / x_{1} & <x_{1} \\
x_{2} & <x_{1}
\end{aligned}
$$

Ack! That only takes care of the first case. Now we use induction to finish the monotone.

$$
\begin{aligned}
x_{k+1} & <x_{k} \\
1 / x_{k+1} & >1 / x_{k} \\
-1 / x_{k+1} & <-1 / x_{k} \\
2-1 / x_{k+1} & <2-1 / x_{k} \\
x_{k+2} & <x_{k+1}
\end{aligned}
$$

To find the limit, we use the same technique as the examples in the book and class.

$$
\begin{aligned}
x_{n+1} & =2-1 / x_{n} \\
x & =2-1 / x \\
x & =1
\end{aligned}
$$

3. 3. Let $x_{1} \geq 2$ and $x_{n+1}:=1+\sqrt{x_{n}-1}$ for $n \in N$. Show that $\left(x_{n}\right)$ is bounded below by 2 and monotone. Find the limit.

Proof. Since $x_{1} \geq 2$, we have that $x_{1}-1 \geq 1$.

$$
\begin{aligned}
x_{1}-1 & \geq 1 \\
\sqrt{x_{1}-1} & \geq 1 \\
1+\sqrt{x_{1}-1} & \geq 2 \\
x_{2} & \geq 2
\end{aligned}
$$

Using induction (and a similar argument), we find $x_{n+1} \geq 2$. That takes care of bounded. We now need to work on monotone. To do this we start by noticing that if $x_{1}-1>1$, then $x_{1}-1>\sqrt{x_{1}-1} \rightarrow x_{1}>$ $1+\sqrt{x_{1}-1}=x_{2}$. That is our base case, we then assume that $x_{k}>x_{k+1}$

$$
\begin{aligned}
x_{k+1} & <x_{k} \\
x_{k+1}-1 & <x_{k}-1 \\
\sqrt{x_{k+1}-1} & <\sqrt{x_{k}-1} \\
1+\sqrt{x_{k+1}-1} & <1+\sqrt{x_{k}-1} \\
x_{k+2} & <x_{k+1}
\end{aligned}
$$

Again, we use the same technique as the examples in the book and class.

$$
\begin{aligned}
x_{n+1} & =2-1 / x_{n} \\
x & =2-1 / x \\
x & =1
\end{aligned}
$$

4. 4. Let $x_{1}=1$ and $x_{n+1}:=\sqrt{2+x_{n}}$ for $n \in N$. Show that $\left(x_{n}\right)$ converges and find the limit.

Proof. Like the first problem, let's show that it is monotone (increasing) first. Note that $x_{1}=1<x_{2}=\sqrt{3}$. For induction, assume that $x_{k}<x_{k+1}$. Next notice

$$
\begin{aligned}
x_{k} & <x_{k+1} \\
2+x_{k} & <2+x_{k+1} \\
\sqrt{2+x_{k}} & <\sqrt{2+x_{k+1}} \\
x_{k+1} & <x_{k+2}
\end{aligned}
$$

Since the sequence is increasing and $x_{n}>0$ for all n, we now want to get an upper bound on the sequence. To do this, note that $x_{1}=1<x_{2}=$ $\sqrt{3}<4$. Using induction that $x_{k}<4$, we obtain

$$
\begin{aligned}
x_{k+1} & =\sqrt{2+x_{k}} \\
& <\sqrt{2+4} \\
& <\sqrt{6} \\
& <4
\end{aligned}
$$

This again, allows us to use MCT to say that the sequence converges. Lastly, to find the limit, we do what we have done for the first 3 problems.

$$
\begin{aligned}
x_{n+1} & =\sqrt{2+x_{n}} \\
x & =\sqrt{2+x} \\
x & =2
\end{aligned}
$$

