1 Section 3.2-1b, 1d, 3, 6b, 7, 19, 21

1. 2. For x_{n} given by the following formulas, establish either the convergence or the dievergence of the sequence $X=\left(x_{n}\right)$.
(a) $x_{n}:=\frac{(-1)^{n} n}{n+1}$

Proof. The even subsequence goes to 1 , the odd subsequence to -1 , hence the sequence diverges.
(b) $x_{n}:=\frac{2 n^{2}+1}{n^{2}+1}$

Proof. Using the $n^{t h}$-term test.

$$
\begin{equation*}
\lim \left(\frac{2 n^{2}+1}{n^{2}+1}\right)=\lim \left(\frac{2+1 / n^{2}}{1+1 / n^{2}}\right)=2 \tag{1}
\end{equation*}
$$

Hence the sequence converges and converges to the value of 2 .
2. 3.

Show that if X and Y are sequences such X and $X+Y$ are convergent, then Y is convergent.

Proof. If we write $Y=(X+Y)-X$, we can use the fact that both $(X+Y)$ and X converge and the fact that the difference of two convergent sequences is also convergent.
3. 6b. Find the limit of $\lim \left(\frac{(-1)^{n}}{n+2}\right)$.

Proof. We note that $-1 / n<\frac{(-1)^{n}}{n+2}<1 / n$ for all $n \in N$. By the Squeeze Theorem this tells us that $\lim \left(\frac{(-1)^{n}}{n+2}\right)=0$.
4. 7. If $\left(b_{n}\right)$ is a bounded sequence and $\lim \left(a_{n}\right)=0$, show that $\lim \left(a_{n} b_{n}\right)=0$. Explain why Theorem 3.2.3 CANNOT be used.

Proof. Let $K(\epsilon)$ be such that $1 / K(\epsilon)<\epsilon / M$ and $\left|b_{n}\right| \leq M$ for all n.

$$
\begin{equation*}
\left|a_{n} b_{n}-0\right|=\left|a_{n} b_{n}\right|=\left|a_{n}\right|\left|b_{n}\right| \leq M\left|a_{n}\right|<M \epsilon / M=\epsilon \tag{2}
\end{equation*}
$$

whenever $n \geq K(\epsilon)$.
5. 19. Let $\left(x_{n}\right)$ be a sequence of positive real numbers such that $\lim \left(x_{n}^{1 / n}\right)=L<1$. Show that there exists a number \mathbf{r} with $0<$ $r<1$ such that $0<x_{n}<r^{n}$ for all sufficiently large $n \in N$. Use thise to show that $\lim \left(x_{n}\right)=0$.

Proof. Since $L<1$ there exists $r \in \Re$ such that $L<r<1$. Note also, that since $L<1, x_{n}^{1 / n}<r$ for all sufficiently large $n \in N$. This yields $0<x_{n}^{1 / n}<r<1$ or $0<x_{n}<r^{n}<1$.

To finish this off, we invoke the Squeeze Theorem and note that since $r<1$ that $r^{n} \rightarrow 0$.
6. 21. Suppose that $\left(x_{n}\right)$ is a convergent sequence and $\left(y_{n}\right)$ is such that for any $\epsilon>0$ there exists \mathbf{M} such that $\left|x_{n}-y_{n}\right|<\epsilon$ for all $n \geq M$. Does it follow that $\left(y_{n}\right)$ is convergent?

Proof. We will show that $\left(y_{n}\right) \rightarrow x\left(\leftarrow x_{n}\right)$.
Given $\epsilon>0$, choose K_{1} so that $\left|y_{n}-x_{n}\right|<\epsilon / 2$ whenever $n>K_{1}$. Likewise, choose K_{2} so that $\left|x_{n}-x\right|<\epsilon / 2$ whenever $n>K_{2}$. Then

$$
\begin{gather*}
\left|y_{n}-x\right|=\left|y_{n}-x_{n}+x_{n}-x\right| \leq\left|y_{n}-x_{n}\right|+\left|x_{n}-x\right| \tag{3}\\
<\epsilon / 2+\epsilon / 2=\epsilon \tag{4}
\end{gather*}
$$

Hence, $\left(y_{n}\right) \rightarrow x$. What this says is if we have two sequences (one of which converges) that stay as close as we want, then they both converge to the same value.

