1 Section 3.1-1d, 2b, 3b, 4, 5a, 5c, 8, 11

1. 1 d . Write the first five terms of $x:=\frac{1}{n^{2}+2}$.

Proof. $x_{1}=\frac{1}{2}, x_{2}=\frac{1}{5}, x_{3}=\frac{1}{10} x_{4}=\frac{1}{17}, x_{5}=\frac{1}{26}$
2. 2b. The first few terms of a sequence $\left(x_{n}\right)$ are given below. Give a formula for the $n^{\text {th }}$ term $x_{n} .1 / 2,-1 / 4,1 / 8,-1 / 16, \ldots$.
$x_{n}=\frac{(-1)^{n+1}}{2^{n}}$
3. 3b. List the five terms of the following inductively defined sequences $y_{1}:=2, y_{n+1}=\frac{1}{2}\left(y_{n}+2 / y_{n}\right)$.

Proof. $y_{1}=2, y_{2}=\frac{3}{2}, y_{3}=\frac{17}{12} y_{4}=\frac{577}{408}, y_{5}=\frac{665857}{470832}$
4. 4. For any $b \in \Re$, prove that $\lim (b / n)=0$.

Proof. Let $K(\epsilon)$ be such that $1 / K(\epsilon)<\epsilon /|b|$. Then

$$
\begin{equation*}
\left|\frac{b}{n}-0\right|=|b| * \frac{1}{n}<|b| * 1 / K(\epsilon)<|b| * \epsilon /|b|<\epsilon \tag{1}
\end{equation*}
$$

The above line works whenever $n \geq K(\epsilon)$.
5. 5. Use the definition of the limit of a sequence to establish the folliwng limits.
(a) $\lim \frac{n}{n^{2}+1}=0$

Proof. We want to show that given an $\epsilon>0$, we can find a $K(\epsilon)$ that satisfies $\left|\frac{n}{n^{2}+1}-0\right|<\epsilon$ for all $n \geq K(\epsilon)$. Our first job is to find $K(\epsilon)$ and then we have to show it works (satisfies the definition).
Part I: Finding $K(\epsilon)$ - If we look at $\left|\frac{n}{n^{2}+1}-0\right|<\epsilon$, we get $\left|\frac{n}{n^{2}+1}\right|<\epsilon$. We recognize that $\frac{n}{n^{2}+1}<\frac{n}{n^{2}}=\frac{1}{n}$. At this point, we know there exists a $K(\epsilon)$ such that $1 / K(\epsilon)<\epsilon$ whenever $n \geq K(\epsilon)$.
Part II: Making sure $K(\epsilon)$ works! (Note: This is the important step!) We start by looking at $\left|\frac{n}{n^{2}+1}-0\right|=\frac{n}{n^{2}+1}<\frac{n}{n^{2}}=\frac{1}{n}<\epsilon$ whenever $n \geq K(\epsilon)$.
(b) $\lim \frac{3 n+1}{2 n+5}=\frac{3}{2}$

Proof. For this one, I'll skip Part I. What we need for Part II though is a $K(\epsilon)$ such that the definition works. Let $K(\epsilon)$ be such that $\frac{1}{K(\epsilon)}<\frac{4}{13} \epsilon$.
We start by looking at $\left|\frac{3 n+1}{2 n+5}-\frac{3}{2}\right|=\left|\frac{6 n+2-6 n-15}{4 n+10}\right|<\left|\frac{-13}{4 n}\right|=\frac{13}{4} * \frac{1}{n}<$ $\frac{13}{4} * \frac{4}{13} \epsilon<\epsilon$ whenever $n \geq K(\epsilon)$.
6. 8. Prove that $\lim \left(x_{n}\right)=0$ if and only if $\lim \left(\left|x_{n}\right|\right)=0$. Give an example to show that the convergence of $\left(\left|x_{n}\right|\right)$ need not imply the convergence of $\left(x_{n}\right)$.

Proof. If $\lim \left(x_{n}\right)=0$, then there exists a $K(\epsilon)$ such that $\left|x_{n}\right|<\epsilon$ whenever $n \geq K(\epsilon)$. And since we have the following set of equalities: $\left|x_{n}\right|=\left\|x_{n}\right\|=$ $\left|\left|x_{n}\right|-0\right|$, we are able to say that $\lim \left(\left|x_{n}\right|\right)=0$. Likewise, if we follow the inequalities in the other direction, we get the other direction of the statment.
For the example (or counterexample), use $\frac{(-1)^{n} n}{n+1}$.
7. 11.

Show that $\lim \left(\frac{1}{n}-\frac{1}{n+1}\right)=0$.
Proof. Let $K(\epsilon)$ be such that $1 / K(\epsilon)<\epsilon$.
$\left|\frac{1}{n}-\frac{1}{n+1}-0\right|=\left|\frac{n+1-n}{n(n+1)}\right|=\frac{1}{n^{2}+n}<\frac{1}{n^{2}}<\frac{1}{n}<\epsilon$ whenever $n \geq K(\epsilon)$.

