1 Section 2.4 - sup portion of 4(a,b), and 6, 13, 18

1. 4.

(a) Let a > 0 and let $aS := \{as : s \in S\}$. Prove $\sup(aS) = a \sup S$.

Proof. Let $u = \sup(S)$. This means that u is an upper bound of S. Hence, $s \leq u$ for all s. Since a > 0, $as \leq au$ for all s. This means au is an upper bound of aS, so $\sup(aS) \leq au = a \sup(S)$.

For the other direction, let $v = \sup(aS)$. Again, we get $as \leq v$ for all s. Since a > 0, we can divide both side to obtain $s \leq v/a$ for all s. This implies that v/a is an upper bound on S or that $\sup(S) \leq v/a$ or rather $a \sup(S) \leq v = \sup(aS)$.

Put the two inequalities together to get the necessary result. \Box

- (b) Let b < 0 and let $bS := \{bs : s \in S\}$. Prove $\sup(bS) = b \inf S$. Left to reader (as it is a mirror of (a)).
- **2.** 6. Let A and B be bounded nonempty subsets of \Re , and let $A+B := \{a+b : a \in A \text{ and } b \in B\}$. Prove that $\sup (A+B) = \sup (A) + \sup (B)$.

There are two ways of proving this (1) showing inequalities in both directions or (2) straight equality. We will do the second:

Proof. We will use the fact that the sets are bounded and non-empty along with the fact that $\sup(a+S) = a + \sup(S)$ (proved in a previous problem). Then let $u = \sup A$ and $v = \sup B$ and choose $a \in A$ as a fixed element. Then $\sup(a+B) = a + \sup(B) = a + v$. Now, $\sup(A+B) = \{a+b: a \in A \text{ and } b \in B\} = \{a+v: a \in A\} = \{a: a \in A\} + v = \sup(A) + v = u + v$.

3. 13. If y > 0, show that there exists $n \in N$ such that $1/2^n < y$.

Proof. By Corollary 2.4.5, we know there exists an $n \in N$ such that 1/n < y. Since we didn't do this particular problem, it is necessary to show that $n < 2^n$. You would do this by induction (easy proof). Because of that fact, we see that $1/2^n < 1/n$ and we have the necessary conclusion. \Box

4. 18. If u > 0 is any real number and x < y, show that there exists a rational number r such that x < ru < y.

Proof. Since u > 0 and x < y, then we know that $\frac{x}{u} < \frac{y}{u}$. By the Density Theorem, we know there exists $r \in Q$ such that $\frac{x}{u} < r < \frac{y}{u}$. We finish the proof by multiplying the inequalities by u.