1 Section $2.4-\sup$ portion of $4(a, b)$, and 6,13 , 18

1. 4.

(a) Let $a>0$ and let $a S:=\{a s: s \in S\}$. Prove $\sup (a S)=a \sup S$.

Proof. Let $u=\sup (S)$. This means that u is an upper bound of S. Hence, $s \leq u$ for all s. Since $a>0, a s \leq a u$ for all s. This means $a u$ is an upper bound of $a S$, so $\sup (a S) \leq a u=a \sup (S)$.
For the other direction, let $v=\sup (a S)$. Again, we get $a s \leq v$ for all s. Since $a>0$, we can divide both side to obtain $s \leq v / a$ for all s. This implies that v / a is an upper bound on S or that $\sup (S) \leq v / a$ or rather $a \sup (S) \leq v=\sup (a S)$.
Put the two inequalities together to get the necessary result.
(b) Let $b<0$ and let $b S:=\{b s: s \in S\}$. Prove $\sup (b S)=b \inf S$.

Left to reader (as it is a mirror of (a)).
2. 6. Let A and B be bounded nonempty subsets of \Re, and let $A+B:=\{a+b: a \in A$ and $b \in B\}$. Prove that $\sup (A+B)=\sup (A)+$ $\sup (B)$.
There are two ways of proving this (1) showing inequalities in both directions or (2) straight equality. We will do the second:

Proof. We will use the fact that the sets are bounded and non-empty along with the fact that $\sup (a+S)=a+\sup (S)$ (proved in a previous problem).
Then let $u=\sup A$ and $v=\sup B$ and choose $a \in A$ as a fixed element. Then $\sup (a+B)=a+\sup (B)=a+v$. Now, $\sup (A+B)=$ $\{a+b: a \in A$ and $b \in B\}=\{a+v: a \in A\}=\{a: a \in A\}+v=\sup (A)+$ $v=u+v$.
3. 13. If $y>0$, show that there exists $n \in N$ such that $1 / 2^{n}<y$.

Proof. By Corollary 2.4.5, we know there exists an $n \in N$ such that $1 / n<y$. Since we didn't do this particular problem, it is necessary to show that $n<2^{n}$. You would do this by induction (easy proof). Because of that fact, we see that $1 / 2^{n}<1 / n$ and we have the necessary conclusion.
4. 18. If $u>0$ is any real number and $x<y$, show that there exists a rational number r such that $x<r u<y$.

Proof. Since $u>0$ and $x<y$, then we know that $\frac{x}{u}<\frac{y}{u}$. By the Density Theorem, we know there exists $r \in Q$ such that $\frac{x}{u}<r<\frac{y}{u}$. We finish the proof by multiplying the inequalities by u.

