1 Section 2.2-1(b), 4, 6(a), 15, 16(a)

1. If $a, b \in \Re$ and $b \neq 0$. Show $|a / b|=|a| /|b|$

Proof.

$$
\begin{aligned}
|a / b| & =|a \cdot 1 / b| & & \text { defn. of division } \\
& =|a| \cdot|1 / b| & & 2.2 .2(\mathrm{a})
\end{aligned}
$$

Now the question we must examine is: Does $|1 / b|=1 /|b|$?
The answer is yes and is justified by using the definition on $|1 / b|$, then using Exercise 2.1.2(c) to obtain the right side of the equation.
2. Show that $|x-a|<\epsilon$ iff $a-\epsilon<x<a+\epsilon$.

Proof. (\Rightarrow) If $|x-a|<\epsilon$, then by 2.2.2(c)

$$
\begin{equation*}
-\epsilon<x-a<\epsilon \tag{1}
\end{equation*}
$$

Then by adding a to everything (2.1.7(b)),

$$
\begin{equation*}
a-\epsilon<x<a+\epsilon \tag{2}
\end{equation*}
$$

(\Leftarrow) If $a-\epsilon<x<a+\epsilon$, subtract a from everything (2.1.7(b)).

$$
\begin{equation*}
-\epsilon<x-a<\epsilon \tag{3}
\end{equation*}
$$

Then by 2.2.2(c), we have $|x-a|<\epsilon$.
3. Find all $x \in \Re$ that satisfies $|4 x-15| \leq 13$.

Solution is the interval $[1 / 2,9 / 2]$.
4. Show that if $a, b \in \Re$ and $a \neq b$, then there exists ϵ-neighborhoods of U of a and V of b such that $U \cap V=\emptyset$.

Proof. If $a \neq b$, then $|a-b| \neq 0$. Define $\epsilon:=\frac{|a-b|}{2}$. Then define

$$
\begin{aligned}
U_{\epsilon}(a) & :=\left\{x \in \Re:|x-a|<\frac{|a-b|}{2}\right\} & & \text { and } \\
V_{\epsilon}(b) & :=\left\{x \in \Re:|x-b|<\frac{|a-b|}{2}\right\} & & \text { and }
\end{aligned}
$$

If you draw the picture of these sets you will see that the intersection is indeed empty.
5. Show that if $a, b \in \Re$, then
(a) $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$

Proof. WLOG assume $a>b$. This means $|a-b|=a-b$.

$$
\begin{equation*}
\frac{1}{2}(a+b+|a-b|)=\frac{1}{2}(a+b+a-b)=a=\max \{a, b\} \tag{4}
\end{equation*}
$$

If $b>a$, proof follows the same except $|a-b|=b-a$.
(b) $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$

Proof. WLOG assume $a>b$. This means $|a-b|=a-b$.

$$
\begin{equation*}
\frac{1}{2}(a+b-|a-b|)=\frac{1}{2}(a+b-(a-b))=b=\min \{a, b\} \tag{5}
\end{equation*}
$$

If $b>a$, proof follows the same except $|a-b|=b-a$.

