1 Section 2.2 - 1(b), 4, 6(a), 15, 16(a)

1. If $a, b \in \Re$ and $b \neq 0$. Show |a/b| = |a| / |b|

Proof.

$$\begin{aligned} |a/b| &= |a \cdot 1/b| & \text{defn. of division} \\ &= |a| \cdot |1/b| & 2.2.2(\mathbf{a}) \end{aligned}$$

Now the question we must examine is: Does |1/b| = 1/|b|? The answer is yes and is justified by using the definition on |1/b|, then using Exercise 2.1.2(c) to obtain the right side of the equation.

2. Show that $|x - a| < \epsilon$ iff $a - \epsilon < x < a + \epsilon$.

Proof. (\Rightarrow) If $|x - a| < \epsilon$, then by 2.2.2(c)

$$-\epsilon < x - a < \epsilon \tag{1}$$

Then by adding a to everything (2.1.7(b)),

$$a - \epsilon < x < a + \epsilon \tag{2}$$

(\Leftarrow) If $a - \epsilon < x < a + \epsilon$, subtract a from everything (2.1.7(b)).

$$-\epsilon < x - a < \epsilon \tag{3}$$

Then by 2.2.2(c), we have $|x - a| < \epsilon$.

- 3. Find all $x \in \Re$ that satisfies $|4x 15| \le 13$. Solution is the interval [1/2, 9/2].
- 4. Show that if $a, b \in \Re$ and $a \neq b$, then there exists ϵ -neighborhoods of U of a and V of b such that $U \cap V = \emptyset$.

Proof. If $a \neq b$, then $|a - b| \neq 0$. Define $\epsilon := \frac{|a-b|}{2}$. Then define

$$U_{\epsilon}(a) := \left\{ x \in \Re : |x - a| < \frac{|a - b|}{2} \right\}$$
 and
$$V_{\epsilon}(b) := \left\{ x \in \Re : |x - b| < \frac{|a - b|}{2} \right\}$$
 and

If you draw the picture of these sets you will see that the intersection is indeed empty. $\hfill \Box$

- 5. Show that if $a, b \in \Re$, then
 - (a) $\max\{a, b\} = \frac{1}{2}(a+b+|a-b|)$

Proof. WLOG assume a > b. This means |a - b| = a - b.

$$\frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+a-b) = a = \max\{a,b\}$$
(4)

If b > a, proof follows the same except |a - b| = b - a.

(b) $\min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$

Proof. WLOG assume a > b. This means |a - b| = a - b.

$$\frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b-(a-b)) = b = \min\{a,b\}$$
(5)

If b > a, proof follows the same except |a - b| = b - a.