1 Section 2.1-10, 13, 14, 20, 22

1. (a) If $a<b$ and $c<d$, prove that $a+c<b+d$.

Proof. We will show two cases:
i. $c<d$

To show this, if $a<b$, then by 2.1.6(a), $b-a \in P$. Likewise, if $c<d$, then $d-c \in P$. By 2.1.5(i), $(b-a)+) d-c) \in P$. This implies $(b+d)-(a+c) \in P$, which by definition 2.1.6(a) means $b+d>a+c$.
ii. $c=d$

By 2.1.7(b), if $a<c$ and $c=d$, we have $a+c<b+c$ or $a+c<b+d$.
(b) If $0<a<b$ and $0 \leq c \leq d$, prove $0 \leq a c \leq b d$.

Proof. By 2.1.7(c), if $0<a<b$ then $c \cdot 0 \leq a c \leq b c$ or $0 \leq a c \leq b c$. We need the \leq because c could equal zero. To finish, by 2.1.7(c) and $c \leq d, 0 \leq a c \leq b d \leq d b$ or $0 \leq a c \leq b d$.
2. If $a, b \in \Re$, show $a^{2}+b^{2}=0$ iff $a=0$ and $b=0$.

Proof. (\Leftarrow) Assume $a=0$ and $b=0$, then $(0)^{2}+(0)^{2}=0+0=0$
(\Rightarrow) Now assume $a^{2}+b^{2}=0$ and $a \neq 0$ and $b \neq 0$. This implies $a^{2}=-b^{2}$. By 2.1.8(a), $a^{2} \in P$. Therefore, $-b^{2} \in P$ or that $b^{2} \notin P$. But this contradicts 2.1.8(a) unless both a and b are zero.
3. (a) If $0 \leq a<b$, show that $a^{2} \leq a b<b^{2}$.

Proof. If $0 \leq a<b$, then multiplying through by a yields $a^{2} \leq a b$. The inequality is a result of the case that $a=0$. So $a^{2} \leq a b<b \cdot b=b^{2}$ (by 2.1.7(c)).
(b) Show by example that it does not follow that $a^{2}<a b<b^{2}$.

If you let $a=0$, then we have $0^{2}<0<b^{2}$ and we have a false statement since $0 \nless 0$.
4. (a) If $0<c<1$, show that $0<c^{2}<c<1$.

Proof.

$$
\begin{aligned}
1 & >c & & \text { by assumption } \\
& =c \cdot 1 & & 2.1 .1(\mathrm{M} 3) \\
& >c \cdot c & & \text { assumption and 2.1.7(c) } \\
& =c^{2} & & \\
& >0 & & 2.1 .8(\mathrm{a})
\end{aligned}
$$

Therefore, $0<c^{2}<c<1$.
(b) If $1<c$, show that $1<c<c^{2}$.

Proof.

1	$<c$		by assumption
	$=c \cdot 1$		$2.1 .1(\mathrm{M} 3)$
	$<c \cdot c$		assumption and 2.1.7(c)
	$=c^{2}$		

Therefore, $1<c<c^{2}$.
5. (a) If $c>1$, show $c^{n} \geq c \forall n \in N$ and $c^{n}>c$ for $n>1$.

Proof. This is an induction proof where you have shown the first case in Ex. 20(b). So assume true for $n=k\left(c^{k} \geq c\right)$ and prove true for $n=k+1$. If $c^{k} \geq c \Rightarrow c \leq c^{k}=1 \cdot c^{k} \leq c \cdot c^{k}=c^{k+1}$. The last statement is due to the fact that $n=1$ is not included.
(b) If $0<c<1$, show that $c^{n} \leq c \forall n \in N$ and that $c^{n}<c$ for $n>1$. I leave this proof to the reader since it follows exactly the same way as the previous part.

