1 Section 2.1 - 10, 13, 14, 20, 22

1. (a) If a < b and c < d, prove that a + c < b + d.

Proof. We will show two cases:

i. c < d

To show this, if a < b, then by 2.1.6(a), $b - a \in P$. Likewise, if c < d, then $d - c \in P$. By 2.1.5(i), $(b - a) + (d - c) \in P$. This implies $(b + d) - (a + c) \in P$, which by definition 2.1.6(a) means b + d > a + c.

ii. c = dBy 2.1.7(b), if a < c and c = d, we have a + c < b + c or a + c < b + d.

(b) If 0 < a < b and $0 \le c \le d$, prove $0 \le ac \le bd$.

Proof. By 2.1.7(c), if 0 < a < b then $c \cdot 0 \leq ac \leq bc$ or $0 \leq ac \leq bc$. We need the \leq because c could equal zero. To finish, by 2.1.7(c) and $c \leq d$, $0 \leq ac \leq bd \leq db$ or $0 \leq ac \leq bd$.

2. If $a, b \in \Re$, show $a^2 + b^2 = 0$ iff a = 0 and b = 0.

Proof. (\Leftarrow) Assume a = 0 and b = 0, then $(0)^2 + (0)^2 = 0 + 0 = 0$

(⇒) Now assume $a^2 + b^2 = 0$ and $a \neq 0$ and $b \neq 0$. This implies $a^2 = -b^2$. By 2.1.8(a), $a^2 \in P$. Therefore, $-b^2 \in P$ or that $b^2 \notin P$. But this contradicts 2.1.8(a) unless both a and b are zero.

3. (a) If $0 \le a < b$, show that $a^2 \le ab < b^2$.

Proof. If $0 \le a < b$, then multiplying through by a yields $a^2 \le ab$. The inequality is a result of the case that a = 0. So $a^2 \le ab < b \cdot b = b^2$ (by 2.1.7(c)).

- (b) Show by example that it does not follow that $a^2 < ab < b^2$. If you let a = 0, then we have $0^2 < 0 < b^2$ and we have a false statement since $0 \neq 0$.
- 4. (a) If 0 < c < 1, show that $0 < c^2 < c < 1$.

Proof.

1 > c	by assumption
$= c \cdot 1$	2.1.1(M3)
$> c \cdot c$	assumption and $2.1.7(c)$
$=c^{2}$	
> 0	2.1.8(a)

Therefore, $0 < c^2 < c < 1$.

(b) If 1 < c, show that $1 < c < c^2$.

Proof.

1 < c	by assumption
$= c \cdot 1$	2.1.1(M3)
$< c \cdot c$	assumption and $2.1.7(c)$
$= c^2$	

Therefore, $1 < c < c^2$.

5. (a) If c > 1, show $c^n \ge c \ \forall n \in N$ and $c^n > c$ for n > 1.

Proof. This is an induction proof where you have shown the first case in Ex. 20(b). So assume true for n = k ($c^k \ge c$) and prove true for n = k + 1. If $c^k \ge c \Rightarrow c \le c^k = 1 \cdot c^k \le c \cdot c^k = c^{k+1}$. The last statement is due to the fact that n = 1 is not included.

(b) If 0 < c < 1, show that $c^n \le c \ \forall n \in N$ and that $c^n < c$ for n > 1. I leave this proof to the reader since it follows exactly the same way as the previous part.