1 Section 2.1-8 // Section 1.2-1, 3, 4, 7, 20

1. Show if $x, y \in Q$, then
(a) $x+y$ is rational and
(b) $x y$ is rational.

Proof. If $x, y \in Q$, then let $x=p / q$ and $y=r / s$.
i. $x+y=\frac{p}{q}+\frac{r}{s}=\frac{p s+r q}{q s}$. The question now is whether $\frac{p s+r q}{q s}$ is rational. The answer is yes. Since the integers are closed under multiplication and addition, $a=p s+r q \in Z$ and $b=q s \in Z$. Hence, $x+y=\frac{a}{b} \in Q$.
ii. $x y=\frac{p}{q} \frac{r}{s}=\frac{p r}{q s}$. Again, for similar reasons we can conclude that $x y \in Q$.
(c) i. Prove if $x \in Q$ and $y \in \Re-Q$, then $x+y \in \Re-Q$.
ii. If, in addition, $x \neq 0$, then show $x y \in \Re-Q$.

Proof. i. By what was done in (a)(i), if $x+y \in Q$ we have that $x+y=\frac{p}{q}+\frac{r}{s}$ which are both in Q. But we know that y cannot be written as a fraction, hence a contradiction that $x+y \in Q$.
ii. Similarly, assume that $x y \in Q$ and using $8(\mathrm{a})$, we see that it forces $y \in Q$ (another contradiction).

1. Prove that $1 /(1 * 2)+1 /(2 * 3)+\cdots+1 /(n *(n+1))=n /(n+1)$ for all $n \in N$.

Proof. (a) Show true for $n=1$: $\frac{1}{1 \cdot(1+2)}=\frac{1}{2}$. CHECK.
(b) Assume true for $n=k$ and show true for $n=k+1$.

Begin with $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1}$. Add $\frac{1}{(k+1)(k+2)}$ to both sides. By simplifying the right side you are left with $\frac{k+1}{k+2}$ which is exactly what is needed on the right.
2. Prove that $3+11+\cdots+(8 n-5)=4 n^{2}-n$ for all $n \in N$.

Proof. (a) Show true for $n=1: 3=4(1)^{2}-1$. CHECK.
(b) Assume true for $n=k$ and show true for $n=k+1$.

As with the previous problem, start with $n=k$ or $3+11+\cdots+$ $(8 k-5)=4 k^{2}-k$ and add $8(k+1)-5$ to both sides. Working the right side,

$$
\begin{aligned}
4 k^{2}-k+(8(k+1)-5) & =4 k^{2}-k+8 k+8-5 \\
& =4 k^{2}+7 k+3
\end{aligned}
$$

Unfortunately, this doesn't look like $4(k+1)^{2}-(k+1)$ (or does it?). By expanding that quantity, we, in fact, do come up with the other statement. Hence the result holds.
3. Prove $1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\left(4 n^{3}-n\right) / 3$ for all $n \in N$.

Proof. Same game as the previous two. Add $(2(k+1)-1)^{2}$ to both sides of the $n=k$ case and simplify.
4. Prove that $5^{2 n}-1$ is divisible by 8 for all $n \in N$.

Proof. This one is a little different than previous problems, but we attack it the same way.
(a) Show true for $n=1: 5^{2 \cdot 1}-1=25-1=24=8 \cdot 3$. CHECK.
(b) Assume true for $n=k$ and show true for $n=k+1$.

If true for $n=k$, this means that $5^{2 k}-1=8 \cdot m_{1}$. To show true for $n=k+1$ means, we have to show $5^{2(k+1)}-1=8 \cdot m_{2}$.

$$
\begin{aligned}
5^{2(k+1)}=5^{2 k+2}-1 & =25 \cdot 5^{2 k}-1 \\
& =25 \cdot 5^{2 k}-1-24+24 \\
& =25 \cdot 5^{2 k}-25+24 \\
& =25\left(5^{2 k}-1\right)+24
\end{aligned}
$$

We know (by induction hypothesis) that $5^{2 k}-1$ is divisible by 8 and so is 24 . Hence, since each term in the sum is divisible by 8 , the sum is also divisible by 8 .
5. Let the numbers x_{n} be defined as follows: $x_{1}=1, x_{2}=2$ and $x_{n+2}=$ $\frac{1}{2}\left(x_{n+1}+x_{n}\right)$ for all $n \in N$. Use the Principle of Strong Induction to show $1 \leq x_{n} \leq 2$ for all $n \in N$.

Proof. For this one, the trick is to figure out what S is. It is defined as $S:=x_{k}: 1 \leq x_{k} \leq 2$ defined by the recursive relation
(a) $1 \in S$ (Base case)
(b) Assume $x_{k} \in S$ and hence $x_{k-1} \in S$. We need to show $x_{k+1} \in S$.

$$
\begin{equation*}
x_{k+1}=(1 / 2)\left(x_{k}+x_{k-1}\right) \tag{1}
\end{equation*}
$$

By the recursive relation combined with the induction step:

$$
\begin{aligned}
& 1 \leq x_{k} \leq 2 \\
& 1 \leq x_{k-1} \leq 2
\end{aligned}
$$

Adding those two inqualities together yields $2 \leq\left(x_{k}+x+k-1\right) \leq 4$. By manipulating that inequality into $1 \leq \frac{1}{2}\left(x_{k}+x_{k-1}\right) \leq 2$, we come to the conclusion. (Inside the inequalities IS x_{k+1}.)

