Section 3.4 - 4a, 7, 12, 14
. 4a. Show that (1 — (—1)" + 1/n) is divergent.

Proof. If you look at the even subsequence (goes to 0) versus the odd sub-
sequence (goes to 2), we have two subsequences that converge to different
values. Hence by, 3.4.5 the sequence diverges. O

. 7. Establish the convergence and find the limits of the following
sequences:

@ ((L+1/m2)")

Proof. Note that we are looking at the subsequence e,z — e. O
(b) ((1+1/2n)")

Proof. ((1+1/2n)") = ((1 + 1/2n)2"*1/”) — e 0
() ((1+1/m)™")

Proof. ((1 + 1/n2)2”2) _ <(1 + 1/n2)n2*2> o2 0
(d) ((1+2/n)")

Proof. (1+2/n)") = ((1+1/(n/2)*"/?) — ¢? 0

. 12. Show that if (x,) is unbounded, then there exists a subse-
quence (x,,) such that lim1/z,, = 0.

Proof. By the Monoton Subsequence Theorem, there exists a subsequence
that is either increasing or decreasing. Let’s look at the increasing case.

This means that z,, < z,, < .... Since the original sequences was
unbounded, we know that our subsequence has the same trait. It also
implies that 1/x,, > 1/x,, > .... Since our our increasing subsequence

is getting larger (to Infinity) our limit of the reciprical goes to 0.

For a decreasing subsequence, we find that our unbounded subsequence is
going to -Infinity, but everything else works as intended. O

. 14. Let (z,) be a bounded sequence and let S :=sup {z,, : n € N}.
Show that if ¢ S, then there is a subsequence of (z,) that
converges to S.

Proof. If x ¢ S, then we can find x,, : zp, € (S —1,5) and zy, : Ty, €
(S—1/2,5) where z,, < @y, and Ty, : Tn, € (S—1/3,5) where ,,, < Zp,,
etc. We have created a subsequence that is increasing and converges to
S. O



