## 1 Section 2.1-1, 2, 4, 5

1. If $a, b \in \Re$, prove the following
(a) If $a+b=0$, then $b=-a$.

Proof. By 2.1.1(A3), we start with $-a=-a+0$.

$$
\begin{align*}
-a=-a+0 & =-a+(a+b) & & \text { (assumption) } \\
& =(-a+a)+b & & (2.1 .1(\mathrm{~A} 2)) \\
& =0+b & & (2 \cdot 1.1(\mathrm{~A} 4))  \tag{A2}\\
& =b & & (2.1 .1(\mathrm{~A} 3)) \tag{A4}
\end{align*}
$$

(b) $-(-a)=a$

Proof. By 2.1.1(A4), $a+(-a)=0$ or $-a+a=0$ (by A1). Then by part (a), $a=-(-a)$.
(c) $(-1) a=-a$

Proof. By 2.1.1(A4), $a+-a=0$. We would like to show $a+(-1) a$ also equals zero. To that end,

$$
\begin{align*}
a+(-1) a & =(1 \cdot a)+(-1 \cdot a)  \tag{M3}\\
& =(1+-1) a  \tag{D}\\
& =0 \cdot a \tag{c}
\end{align*}
$$

Since additive inverses are unique, $-a=(-1) a$.
(d) $(-1)(-1)=1$

Proof. By (b) and (c) and letting $a=-1,(-1)(-1)=-(-1)=1$, where the first equality is due to (c) and the second is due to (b).
2. Prove that if $a, b \in \Re$, then
(a) $-(a+b)=(-a)+(-b)$

Proof.

$$
\begin{align*}
-(a+b) & =(-1)(a+b) & & (\text { Ex. 1, (a)) } \\
& =(-1) a+(-1) b & & (2.1 .1(\mathrm{D})) \\
& =-a+-b & & (\text { Ex. 1, (c)) } \tag{D}
\end{align*}
$$

(b) $(-a) \cdot(-b)=a \cdot b$

Proof.

$$
\begin{align*}
(-a) \cdot(-b) & =(-1) a \cdot(-1) b  \tag{c}\\
& =(-1)(-1) a \cdot b  \tag{M1}\\
& =1 a \cdot b  \tag{d}\\
& =a \cdot b \tag{M3}
\end{align*}
$$

(c) $1 /(-a)=-(1 / a)$

Proof. We want to show
i. $-a \cdot 1 /-a=1$
ii. $-a \cdot-(1 / a)=1$

We get the first one directly by 2.1.1(M4). For the second part, $-a \cdot-(1 / a)=a \cdot 1 / a=1$, where the first equality is due to part (b).
(d) $-(a / b)=-a / b$ if $b \neq 0$

Proof.

$$
\begin{aligned}
-(a / b) & =(-(a \cdot 1 / b) & & \text { (defn. of division) } \\
& =-(a \cdot 1 / b) & & \text { (Ex. 1, (c)) } \\
& =((-1) \cdot a) \cdot 1 / b & & (2.1 .1(\mathrm{M} 2)) \\
& =-a \cdot 1 / b & & \text { (Ex. 1, (c)) } \\
& =-a / b & & \text { (defn. of division) }
\end{aligned}
$$

3. If $a \in \Re$ satisfies $a \cdot a=a$, prove either $a=0$ or $a=1$.

Proof. If $a=0$, then $a \cdot 0=0$ by 2.1.2(c). Otherwise, by 2.1.2(b), we get (since multiplicative identities are unique) that $a \cdot a=a$ implies $a=1$.
Therefore, $a=0$ or $a=1$.
4. If $a \neq 0$ and $b \neq 0$, show that $1 /(a b)=(1 / a)(1 / b)$.

Proof. We want to show $1=(a b) \cdot 1 /(a b)$ and $(a b) \cdot(1 / a)(1 / b)=1$ which will prove the statement since multiplicative identities are unique. By 2.1.1(M4), we get $1=(a b) \cdot 1 /(a b)$. To get the other, note

$$
\begin{aligned}
(a b) \cdot(1 / a)(1 / b) & =(b \cdot a)(1 / a) \cdot(1 / b) & & (2.1 .1(\mathrm{M} 1)) \\
& =b \cdot(a \cdot 1 / a) \cdot 1 / b & & (2.1 .1(\mathrm{M} 2)) \\
& =b \cdot 1 \cdot 1 / b & & (2.1 .1(\mathrm{M} 4)) \\
& =(b \cdot 1) \cdot 1 / b & & (2.1 .1(\mathrm{M} 2)) \\
& =b \cdot 1 / b & & (2.1 .1(\mathrm{M} 3)) \\
& =1 & & \text { (via similar argument) }
\end{aligned}
$$

