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(Note that the Praxis Content Knowledge Standards lists these two objectives in the opposite order.)

1.  Use the Axiomatic Method (see Hvidsten sections 1.4 – 1.6)
The axiomatic method is the accepted mechanism for deriving and demonstrating “truths” (or true statements, at least) in the field of mathematics.
The axiomatic method begins with a set of axioms (or postulates).  These are mathematical statements which are asserted (i.e., taken as true) without proof, often on the basis of their self-evidence.  Similarly, a formal mathematical system must also begin with a collection of undefined terms, words with mathematical content but no explicit definition.

From there, the axiomatic method proceeds by defining new terms, using previously established terms within the definition.  More importantly, the axiomatic method provides a logical structure through which new truths—true mathematical statements—are derived from previously established truths via the rules of deductive logic.  Once a mathematical statement or implication has been established by such a method of proof, it is referred to as a theorem (or lemma or corollary or proposition…).  Now we can see the need for starting with initial collections of axioms and undefined terms; since every term and statement under the axiomatic method is built upon previously established terms and statements, we need these starting points in order to avoid infinite regress.
Perhaps the most familiar formal axiomatic system is Hilbert’s formalization of Euclidean geometry.  In his Grundlagen der Geometrie, David Hilbert was able to produce the entire body of Euclidean geometry from five undefined terms and sixteen axioms.  (Euclid had claimed to accomplish the same with five geometric axioms—or postulates—in his Elements, but this work was not formally rigorous.)  (see Hvidsten sections 1.4 and Appendix D)

2.  Demonstrate an Understanding of the Different Levels of Mathematical Impossibility (see Hvidsten section 1.5)

The term impossible has a more precise meaning in mathematics than it does in ordinary discourse.  True mathematical impossibility indicates that if the impossible condition were true, a logical contradiction with other demonstrated statements in the axiomatic system—or with the rules of logic themselves—would arise.  In the body established mathematics, a number of conditions have been proved to be mathematical impossible in this sort of way.  For example:

1) An angle cannot be trisected through purely geometric means.

2) No well-defined voting system for three or more candidates can satisfy both the Condorcet Winner Criterion and the Independence of Irrelevant Alternatives.  (This is the Arrow Impossibility Theorem.)
3) It is impossible for a rectangle to exist in hyperbolic geometry.

Mathematical impossibility is not the same as “undefined.”  We may hear someone say that it is ‘impossible’ to divide by zero.  Such a statement is not a mathematically precise statement.  What we actually mean in a case like this is that the condition in question is not defined; that is, the statement itself is meaningless.  There is a difference, in mathematics, between ‘meaningless’ and ‘impossible.’

Finally, there is a mathematical difference between impossible and “unknown,” or “very difficult.”  A conjecture is a mathematical statement that is believed (or claimed) to be true, but has been neither proved nor disproved.  Famous examples of these include the Goldbach Conjecture, Twin Primes Conjecture, and Riemann Hypothesis.  (Until the mid-1990’s and Andrew Wiles, the famous Last Theorem of Fermat was actually a conjecture.)  These major long-standing conjectures, in particular, have shown them-selves to be very difficult to prove, but that does not mean that they are impossible to prove (as Wiles showed), nor does their present lack of proof mean that the content of these conjectures is false.  Indeed, most mathematicians agree that every number greater than 2 can indeed be expressed as the sum of two prime numbers; we just haven’t been able to prove it yet.  (And indeed it is still possible, then, that such a statement is ultimately false.)

To make matters one step more complicated, we now understand that there are, in any axiomatic system rich enough to support ordinary arithmetic, some statements that are fundamentally unknowable.  These are statements that are well-defined mathematical sentences (hence, we’re not referring to the problem with undefined or meaningless concepts from earlier in this discussion); therefore, they have a truth value (i.e., they are either true or false), but it is impossible for anyone to ever prove or disprove them, by virtue of their curious logical place within the axiomatic system.  The existence of these curious statements was proved in Kurt Gődel’s Incompleteness Theorem.  The good news is that these statements are by nature somewhat artificial “traps” that generally do not tread upon the body of the mathematical content within an axiomatic system.  In mathematics, we often encounter the “impossible” and the “unknown,” but rarely need to go face to face with the “unknowable.”




































