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1. Calculate the area of regions in the plane
a. Let f(x) be a function defined on a closed interval [a, b].  We say that a number I is the definite integral of f over [a, b] and that I is the limit of the Riemann sums 
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Section 5.3
b. Rules Satisfied by definite integrals – When f and g are integrable, the definite integral satisfies Rules 1 to 7 below:
i. Order of Integration - 
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ii. Zero Width Interval - 
[image: image8.wmf]0

)

(

=

ò

a

a

dx

x

f


iii. Constant Multiple - 
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iv. Sum and Difference - 
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v. Additivity - 
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vi. Max-Min Inequality – If f has a maximum value max f and a minimum value min f on [a,b], then 
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vii. Domination - 
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Section 5.3

c. If f and g are continuous with 
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 throughout [a,b], then the area of the region between the curves 
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 from a to b is the integral of (f – g) from a to b.
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Section 5.6

2. Calculate the volume of solids formed by rotating plane figures about a line
a. The volume of a solid of know integrable cross-sectional area A(x) from x = a to x = b is the integral of A from a to b, 
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Section 6.1

b. Calculating the Volume of a Solid

i. Sketch the solid and a typical cross-section.

ii. Find a formula for A(x), the area of a typical cross-section.

iii. Find the limits of integration.

iv. Integrate A(x) using the Fundamental Theorem.

Section 6.1

c. The solid generated by rotating a plane region about an axis in its plane is called a solid of revolution.  If the cross-section is a disk the volume is 
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where R(x) is the radius of the disk at x.
Section 6.1

d. If the cross-section is a washer with R(x) the outer radius and r(x) the inner radius the volume is 
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Section 6.1

e. The volume of the solid generated by revolving the region between the x-axis and the graph of a continuous function 
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i. Draw the region and sketch a line segment across it parallel to the axis of revolution.  Label the segment’s height or length (shell height) and distance from the axis of revolution (shell radius).

ii. Find the limits of integration for the thickness variable.

iii. Integrate the product 
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(shell radius)(shell height) with respect to the thickness variable (x or y) to find the volume.
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3. Determine the limits of sequences and simple infinite series

a. An infinite series is the sum of an infinite sequence of numbers 
[image: image26.wmf]å

¥

=

1

n

n

a

.

Section 11.2

b. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L.  We also write 
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Section 11.2

c. The Continuous Function Theorem for Sequences:  Let {an} be a sequence of real numbers.  If 
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 and if f is a function that is continuous at L and defined for all an, then 
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d. A sequence {an} with the property that 
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e. The Nondecreasing Sequence Theorem:  A nondecreasing sequence of real numbers converges if and only if it is bounded from above.  If a nondecreasing sequence converges, it converges to its least upper bound.

Section 11.1

f. If 
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g. The nth-term Test for Divergence: 
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4. Use standard tests to show convergence (either conditional or absolute) or divergence of series (e.g., comparison, ratio).

a. Absolute and Conditional Convergence
i. A series 
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 converges absolutely (is absolutely convergent) if the corresponding series of absolute values 
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ii. A series that converges but does not converge absolutely converges conditionally.
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b. The Integral Test:  Let {an} be a sequence of positive terms.  Suppose that 
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c. The Comparison Test:  Let 
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i. 
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d. Limit Comparison Test:  Suppose that 
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i. If 
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e. The Ratio Test:  Let 
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i. the series converges if 
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iii. the test is inconclusive if 
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f. The Root Test:  Let 
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g. The Alternating Series Test (Leibniz’s Theorem):  The series 
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 converges if all three of the following conditions are satisfied:
i. the un’s are all positive,

ii. 
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