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Mathematical Reasoning and Modeling:

with examples from Linear Programming and Physics
Mathematical Modeling is the application of some branch of mathematics to represent, understand and predict the behavior of real physical systems, economics, rational choices, biological systems, etc.  Creation of a mathematical model usually involves idealization of the system’s behavior: limiting the influences we consider as acting on the system, examining only certain aspects of the system’s behavior, and approximating complex behavior by a simpler set of assumptions and equations.  The question always should be asked, “Does the idealization over-simplify what we are attempting to study?”  The range of mathematical models is enormous.  In any model we should determine:
· The appropriate branch of mathematics for the model.
· Are there alternative models and if so do they give consistent results?

· The assumptions we make regarding the system to be studied.
· What possible influences will be ignored in the study?  What limitation does this place on the reasonableness and accuracy of the model?
· For any quantitative result of the model, do we have a way of estimating its probable error range?
Example I:  Linear Programming
Linear programming attempts to determine the optimal allocation of finite resources to best realize some goal.  The goal is described by an objective function that is to be maximized or minimized.  The objective function might represent the profit of the enterprise or the speed at which the tasks are accomplished.  The approximation is made that this objective function is a linear function of the variables that may be controlled.  The resource constraints of the problem are represented by a set of linear inequalities of these same variables.  For instance, if the total funds available for the project are $2,000,000 and must be allocated between two tasks, x dollars for the first task and y for the second, the linear inequality constraints will include:

x  +  y  (  2,000,000


x  (  0

y  (  0
For linear programming problems that are reducible to two control variables, a simple graphical approach can be used.  The technique is to graph all inequality constraints and determine the allowed region, called the feasible set.  In the simple constraint example above, the first inequality disallows any point (x, y) above the line  x + y  =  2,000,000.  The last two inequalities restrict the feasible set to the first quadrant.  If the objective function M(x, y) is a linear function of x and y, the maximum and minimum values of M will occur at a vertex of the feasible set.   The graphical technique is to determine the coordinates of all vertices of the feasible set, evaluate the objective function at each of these vertices, and select the vertex that gives the desired optimal value of the objective function.  For linear programming problems that are not reducible to two control variables and therefore are not amenable to the graph technique, a clever matrix approach, the Simplex Method, can be used.  The technique relies on replacing the inequality constraints by equalities through the introduction of a non-negative “slack variable” into each inequality.  These equations, along with the objective function, form an over-determined system of equations which can be manipulated by an augmented coefficient matrix.
Example II:  Physics of Sound, Musical Instruments

The audible tones produced by musical instruments result from vibrations of some part of the instrument.  For stringed instruments, the vibration may be the string itself or a sounding-board.  For wind instruments or an organ, the vibrations are a column of air in the instrument.   The pitch of the sound corresponds to the frequency of the vibration.  The appropriate branch of mathematics for modeling most laws of physics is differential equation theory.  Consider a sound wave that travels down the taut string of some stringed instrument.  Its velocity v is 
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  where T is the tension and ( the mass density of the string.
The sound wave will be reflected at the two fastened-down ends of the string.  The system can be modeled by a wave-equation which has as its general solution sinusoidal traveling waves moving in both directions at velocity ( v.  The linear combination of the right-moving and left-moving waves will set up a standing wave:
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           with wavelength λ and frequency f
The boundary conditions that the displacement y must be 0 at the two fixed ends determine the valid particular solutions.  If the length of the string is L, then an integral multiple of half-wavelengths can fit into length L.  

λn  =  2 L / n           for n = 1, 2, 3, …

The relation between frequency and wavelength in the medium conducting the sound is


v  =  f  λ
Thus, the lowest or fundamental tone of the stringed instrument is 
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   where v is the velocity of the wave pulse in the string of length L.

If this is combined with the expression for v in terms of the properties of the string, we have for the fundamental tone produced by a taut string:
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Examine a piano and determine how many octaves it contains.   The pitch doubles with each octave.  If all piano strings had the same mass density and tension, the ratio of string lengths between the highest and lowest notes on the piano would have to be the number of octaves (plus 1).  How does the piano design compress this range of string lengths?  What is adjusted to tune a piano string to the correct pitch.  Is this how a violin and a guitar are also tuned?  Unlike the piano, many string instruments (e.g., violin or guitar) have very few strings.  How does the violinist create many more tones than the number of strings?  Does our mathematical model provide the answers to these questions?
Finite Mathematics, S. T. Tan, chapters 3 & 4.
Physics for Scientists and Engineers, Douglas Giancoli, chapter 16
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