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1. Scalar multiply, add, subtract, and multiply vectors and matrices
Let 
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Also, if A is m x n, B is n x p, and we denote the columns of B by
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By linearity of multiplication of A,
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Therefore,
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Section 2.1 – pages 107-115
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2. Find inverses of matrices

Row reduce the augmented matrix 
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.  Otherwise, A does not have an inverse.
Section 2.2 – pages 118-125
3. Understand and use the properties of inverses of matrices

The Invertible Matrix Theorem
Let A be a square n x n matrix.  Then the following statements are equivalent.  That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n x n identity matrix.

c. A has n pivot positions.

d. The equation 
[image: image14.wmf]0

=

Ax

 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation 
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g. The equation 
[image: image16.wmf]b

Ax

=

 has at least one solution for each in 
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h. The columns of A span Rn.

i. The linear transformation 
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 maps Rn onto Rn.

j. There is an n x n matrix C such that CA = I.

k. There is an n x n matrix D such that AD = I.

l. AT is an invertible matrix.

m. The columns of A from a basis of Rn.

n. Col A = Rn
o. dim Col A = n

p. rank A = n

q. Nul A = 
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r. dim Nul A = 0
s. The number 0 is NOT an eigenvalue of A.

t. The determinant of A is NOT 0.

u. 
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w. Row A = Rn
x. A has n nonzero singular values.

Multiple sections/pages through the text

4. Determine and apply the matrix representation of a linear transformation

Theorem
Let 
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 be a linear transformation.  Then there exists a unique matrix A such that
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In fact, A is the m x n matrix whose jth column is the vector 
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 is the jth column of the identity matrix in Rn:
Section 1.9 – pages 82-90
5. Use matrix techniques to solve systems of linear equations

Gaussian elimination

Section 1.2 – pages 14-25
Inverse matrix multiplication
Section 2.2 – pages 118-125
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